603 research outputs found

    Post-fire dynamics of woody vegetation in seasonally flooded forests (impucas) in the Cerrado-Amazonian Forest transition zone

    Get PDF
    Journal ArticleAuthor versions of article. The version of record is available from the publisher via doi: 10.1016/j.flora.2014.02.008© 2014 Elsevier GmbH. All rights reserved.Fire disturbance alters the structural complexity of forests, above-ground biomass stocks and patterns of growth, recruitment and mortality that determine temporal dynamics of communities. These changes may also alter forest species composition, richness, and diversity. We compared changes in plant recruitment, mortality, and turnover time over three years between burned and unburned sites of two seasonally flooded natural forest patches in a predominantly savanna landscape (regionally called 'impucas') in order to determine how fire alters forest dynamics and species composition. Within each impuca, 50 permanent plots (20m×10m) were established and all individuals ≄5cm diameter at breast height (DBH) identified and measured in two censuses, the first in 2007 and the second in 2010. Unplanned fires burned 30 plots in impuca 1 and 35 in impuca 2 after the first census, which enabled thereafter the comparison between burned and unburned sites. The highest mortality (8.0 and 24.3% year-1 for impuca 1 and 2) and turnover time (69 and 121.5 years) were observed in the burned sites, compared to 3.7 and 5.2%year-1 (mortality), and 28.4 and 40.9 years (turnover), respectively, for the unburned sites. Although these seasonally flooded impuca forests are embedded in a fire-adapted savanna landscape, the impucas vegetation appears to be sensitive to fire, with burned areas having higher mortality and turnover than unburned areas. This indicates that these forest islands are potentially at risk if regional fire frequency increases. © 2014 Elsevier GmbH.Natural Environment Research Council (NERC)Gordon and Betty Moore FoundationMato Grosso State Research Support FoundationProgram of Academic Cooperatio

    Absorbing Roots Areas and Transpiring Leaf Areas at the Tropical Forest and Savanna Boundary in Brazil

    Get PDF
    © Copyright 2014 Nova Science PublishersThis is the prepublication draft of a chapter published by Nova Science Publishers in the book Savannas: Climate, Biodiversity and Ecological Significance, published in 2013. Available to purchase at https://www.novapublishers.com/catalog/product_info.php?products_id=39734TROBIT Project (Tropical Biomes in Transition

    Fire Effects on Understory Forest Regeneration in Southern Amazonia

    Get PDF
    This is the final version. Available on open access from Frontiers Media via the DOI in this recordData Availability Statement: The datasets generated for this study are available on request to the corresponding author.Fire in tropical forests increases tree mortality, degrades forest structure, and reduces carbon stocks. Currently, there are large gaps in understanding how fire affects understory forest structure and composition, interactions with fire recurrence, and long-term impacts. Understanding these changes is critical to evaluate the present and future response of tropical forests to fire. We studied post-fire changes in understory regeneration in forests in Mato Grosso State, southern Amazonia, Brazil, aiming to answer the following questions: (i) does forest structure (basal area) and tree community composition vary with fire frequency and time since the last fire? (ii) does the response differ among strata (e.g., sapling, larger trees)? (iii) are changes in diversity associated with changes in forest structure? We surveyed trees and lianas in previously structurally intact forests that underwent selective logging, followed by different fire histories, including 5 and 16 years after once-burned, 5 years after three times burned, and unburned (control). Overall, species composition (abundance, richness, and number of families) and diversity were highest for the unburned treatment and lowest for the recurrent burned areas. Fire frequency negatively affected plant structure and basal area; basal area of small, medium, and large plants declined significantly by more than 50% in the most frequently burned areas. Richness was positively related to basal area in the three times burned sites and in the 16 years regenerating site for all strata. Our results demonstrate the negative influence of frequent fires on both the composition and structure of small trees in Amazonian forest. These changes to the cohort of small-sized trees may persist and have long-term impacts on forest structure, affecting the capacity, and direction of forest recovery. With wildfire widespread across the region and increasing in frequency, fire may negatively affect tree diversity in remaining selectively logged forests, and affect regional carbon cycling with consequences for the global vegetation carbon sink.Coordination of Improvement of Personnel in Higher Education, Brazil (CAPES

    Drought generates large, long-term changes in tree and liana regeneration in a monodominant Amazon forest

    Get PDF
    The long-term dynamics of regeneration in tropical forests dominated by single tree species remains largely undocumented, yet is key to understanding the mechanisms by which one species can gain dominance and resist environmental change. We report here on the long-term regeneration dynamics in a monodominant stand of Brosimum rubescens Taub. (Moraceae) at the southern border of the Amazon forest. Here the climate has warmed and dried since the mid-1990â€Čs. Twenty-one years of tree and liana regeneration were evaluated in four censuses in 30 plots by assessing species abundance, dominance, and diversity in all regeneration classes up to 5 cm diameter. The density of B. rubescens seedlings declined markedly, from 85% in 1997 to 29% in 2018 after the most intense El Niño-driven drought. While the fraction contributed by other tree species changed little, the relative density of liana seedlings increased from just 1 to 54% and three-quarters of liana species underwent a ten-fold or greater increase in abundance. The regeneration community experienced a high rate of species turnover, with changes in the overall richness and species diversity determined principally by lianas, not trees. Long-term maintenance of monodominance in this tropical forest is threatened by a sharp decline in the regeneration of the monodominant species and the increase in liana density, suggesting that monodominance will prove to be a transitory condition. The close association of these rapid changes with drying indicates that monodominant B. rubescens forests are impacted by drought-driven changes in regeneration, and therefore are particularly sensitive to climatic change

    Soil pyrogenic carbon in southern Amazonia: Interaction between soil, climate, and above-ground biomass

    Get PDF
    This is the final version. Available on open access from Frontiers Media via the DOI in this recordData availability statement: The original contributions presented in this study are included in the article/Supplementary material, further inquiries can be directed to the corresponding author/s.The Amazon forest represents one of the world’s largest terrestrial carbon reservoirs. Here, we evaluated the role of soil texture, climate, vegetation, and distance to savanna on the distribution and stocks of soil pyrogenic carbon (PyC) in intact forests with no history of recent fire spanning the southern Amazonia forest-Cerrado Zone of Transition (ZOT). In 19 one hectare forest plots, including three Amazonian Dark Earth (ADE, terra preta) sites with high soil PyC, we measured all trees and lianas with diameter ≄ 10 cm and analyzed soil physicochemical properties, including texture and PyC stocks. We quantified PyC stocks as a proportion of total organic carbon using hydrogen pyrolysis. We used multiple linear regression and variance partitioning to determine which variables best explain soil PyC variation. For all forests combined, soil PyC stocks ranged between 0.9 and 6.8 Mg/ha to 30 cm depth (mean 2.3 ± 1.5 Mg/ha) and PyC, on average, represented 4.3% of the total soil organic carbon (SOC). The most parsimonious model (based on AICc) included soil clay content and above-ground biomass (AGB) as the main predictors, explaining 71% of soil PyC variation. After removal of the ADE plots, PyC stocks ranged between 0.9 and 3.8 Mg/ha (mean 1.9 ± 0.8 Mg/ha–1) and PyC continued to represent ∌4% of the total SOC. The most parsimonious models without ADE included AGB and sand as the best predictors, with sand and PyC having an inverse relationship, and sand explaining 65% of the soil PyC variation. Partial regression analysis did not identify any of the components (climatic, environmental, and edaphic), pure or shared, as important in explaining soil PyC variation with or without ADE plots. We observed a substantial amount of soil PyC, even excluding ADE forests; however, contrary to expectations, soil PyC stocks were not higher nearer to the fire-dependent Cerrado than more humid regions of Amazonia. Our findings that soil texture and AGB explain the distribution and amount of soil PyC in ZOT forests will help to improve model estimates of SOC change with further climatic warming.Coordination for the Improvement of Higher Education Personnel (CAPES)Natural Environment Research Council (NERC

    Applying design patterns in the search-based optimization of software product line architectures

    Get PDF
    The design of the product line architecture (PLA) is a difficult activity that can benefit from the application of design patterns and from the use of a search-based optimization approach, which is generally guided by different objectives related, for instance, to cohesion, coupling and PLA extensibility. The use of design patterns for PLAs is a recent research field, not completely explored yet. Some works apply the patterns manually and for a specific domain. Approaches to search-based PLA design do not consider the usage of these patterns. To allow such use, this paper introduces a mutation operator named “Pattern-Driven Mutation Operator” that includes methods to automatically identify suitable scopes and apply the patterns Strategy, Bridge and Mediator with the search-based approach multi-objective optimization approach for PLA. A metamodel is proposed to represent and identify suitable scopes to receive each one of the patterns, avoiding the introduction of architectural anomalies. Empirical results are also presented, showing evidences that the use of the proposed operator produces a greater diversity of solutions and improves the quality of the PLAs obtained in the search-based optimization process, regarding the values of software metrics
    • 

    corecore