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Abstract The design of the Product Line Architecture (PLA) is a difficult activ-
ity that can benefit from the application of design patterns and from the use of a
search-based optimization approach, which is generally guided by different objec-
tives related, for instance, to cohesion, coupling, and PLA extensibility. The use of
design patterns for PLAs is a recent research field, not completely explored yet. Some
works apply the patterns manually and for a specific domain. Approaches for search-
based PLA design do not consider the usage of these patterns. To allow such use,
this paper introduces a mutation operator, named “Pattern-Driven Mutation Opera-
tor” that includes methods to automatically identify suitable scopes and apply the
patterns Strategy, Bridge and Mediator with the search-based approach MOA4PLA
(Multi-objective Optimization Approach for PLA). A metamodel is proposed to rep-
resent and identify suitable scopes to receive each one of the patterns, avoiding the
introduction of architectural anomalies. Empirical results are also presented, showing
evidences that the use of the proposed operator produces a greater diversity of solu-
tions and improves the quality of the PLAs obtained in the search-based optimization
process, regarding to the values of software metrics.
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1 Introduction

A Software Product Line (SPL) is generally defined as a set of products, sharing
common features [28], which correspond to important SPL functionalities, generally
visible for the users. In SPL Engineering, the Product Line Architecture (PLA) is
an important artifact because it contains all commonalities and variabilities of an
SPL, and it is used to derive the architectures of the products. A commonality is
related to features and elements that are present in all products of the SPL, whereas a
variability represents features and elements that change from one product to another.
Variabilities are represented by variation points (where the variation occurs), and
variants (what varies) [28].

The PLA design can be a difficult activity, as the SPL must accommodate the
increasing complexity of the software products. In general, UML (Unified Modeling
Language [39]) class diagrams are largely used to model architectures in a more
detailed level. Due to this, the usage of design patterns, such as the ones from the
GoF catalog [14], can help the architect to solve some problems found in the PLA
design.

Design patterns are common solutions widely used by developers in several projects
to solve common design problems. In a detailed level of the development process, one
of their main goals is to obtain high cohesion and low coupling of the architectural el-
ements, which can lead to a better software reusability. However, the design of PLAs
and the application of design patterns in the PLA context are still difficult for some
architects, specially to novices. This is because the architect needs to deal with differ-
ent architectural attributes, such as modularity and extensibility. In addition to this,
he/she needs to identify the best patterns to be applied in a given situation.

Search based approaches, such as MOA4PLA (Multi-Objective Optimization Ap-
proach for PLA Design) [6, 31, 32] can help the architect in the PLA design. MOA4PLA
includes a representation for the architecture, a set of mutation operators, which are
specific for PLAs by focusing on feature modularity. These operators are used by
search-based algorithms, such as Multi-Objective Evolutionary Algorithms (MOEAs),
to produce a set of solutions with the best trade-offs among different objectives,
related to PLA extensibility, cohesion and coupling. However, despite of the good
MOA4PLA results, the approach does not address another task of the PLA design
mentioned above: the application of design patterns.

We found in the literature some works that successfully use design patterns with
search-based design approaches [36], which served as evidence and motivation for the
idea of this work. Cinnéide and Nixon [3] used design patterns in a semi-automatic
refactoring approach, whereas Räihä et al. [37, 38] used design patterns in the syn-
thesis of software architectures with genetic algorithms (GA). Although these works
can be applied to the SPL context, they do not take into account PLA characteristics,
such as how to comply design patterns with variabilities, variation points and variants.
Some other works that encompass SPLs, such as [27, 46], do not use search-based
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techniques. In addition to these, most works are specific to certain domains, and gen-
erally use manual or semi-automatic approaches.

This lack of work addressing both subjects, design patterns applied to PLA and
search-based design, maybe is due to two main reasons. The first reason is that both
subjects are current research topics, not completely explored yet. The second one is
that there are some challenges to overcome for the application of design patterns in
the SPL context. The architect must know the design patterns and their main char-
acteristics, as well as he/she must recognize and determine domain specific patterns
based on SPL features [34]. Coplien [8] stated that design patterns are not meant to
be executed by computers, but rather to be used by engineers with perception, taste,
experience and aesthetics sense. The idea is to capture and encapsulate these virtues
into algorithms allowing automatic application of design patterns in architectures.

With this objective in mind, we introduced in a preliminary work [19] a meta-
model to represent scopes that are suitable to receive the Strategy and Bridge pat-
terns [14], and a mutation operator (“Pattern-Driven Mutation Operator” (PDMO))
used with MOA4PLA. In this context, a scope is a set of class diagram elements
of the PLA, such as classes, interfaces, methods, variabilities and others. A suitable
scope is a set of elements that can receive the application of a design pattern, i.e.,
the design pattern “fits” in the scope and can be suitably applied to these elements
in order to improve the design. The proposed operator changes the PLA and helps to
improve the design, considering cohesion, coupling and extensibility. The promising
results, obtained in a preliminary evaluation with PDMO, serve as motivation to ex-
tend our previous work to allow the application of other patterns with MOA4PLA. In
this paper, we describe the research results obtained with this extension.

The main contribution of this work to the application of design patterns in the
search-based design of PLA is the addition of the Mediator design pattern to the
proposed approach. To enable this, some secondary contributions are presented. We
introduce models to represent the suitable scopes and detail the verification and appli-
cation methods for such pattern. Because the suite of design patterns is different from
our preliminary work, we detail in this paper a set of experiments and we present new
findings regarding the addition of this new pattern. The overall results are satisfac-
tory, and Mediator instances are found in the generated architectures with coherent
and decoupled structures. Furthermore, we identify how the Mediator pattern had its
elements abstracted by the Bridge and Strategy patterns.

Additionally, we can identify the following secondary contributions of this work:
i) an updated description of the results of the feasibility analysis conducted towards
the GoF design patterns; and ii) an updated mutation operator that includes the com-
plete description of the methods to automatically identify suitable scopes and apply
design patterns. These updates were performed to increase the operator performance
and to include Mediator in the approach.

The rest of this paper is organized as follows. Section 2 gives a brief back-
ground on Multi-Objective Optimization. Section 3 reviews the search-based ap-
proach MOA4PLA [6]. Section 4 presents results of the conducted feasibility analy-
sis. Section 5 describes the concept and metamodel to define suitable scopes for de-
sign patterns. Section 6 introduces the Pattern-Driven Mutation Operator. Section 7
presents the description of the empirical evaluation using the proposed operator. Sec-
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tion 8 shows and analyses the experimental results. Section 9 contains related work.
Finally, Section 10 concludes this paper and discusses future work.

2 Multi-Objective Optimization

Multi-objective problems are impacted by many conflicting factors, objectives to be
optimized. If an objective is optimized, then the other ones will be probably de-
gradeted [4]. For instance, when buying a car, the buyer may pay more for a faster
car, but if he/she wants a cheaper car, then probably he/she will lose some power in
exchange of cost. The idea is to find solutions with a certain compromise between
these objectives, thus several non-dominated solutions may exist. A solution x is said
to dominate another solution y (x≺ y) if it is better or equal to y in all objectives, and
is better in at least one objective. If this is not true, then x and y are non-dominated.

All the non-dominated solutions of a problem compose the true Pareto front, i.e.,
there are no solutions in the search space that are better than the ones in this front.
However, these solutions are usually very hard to find, and the multi-objective algo-
rithms can only find an approximation for this front (PFknown) [4].

There are several metaheuristics that work with multi-objective optimization [15].
Among them the Multi-Objective Evolutionary Algorithms (MOEAs) stand out as
one of the most used [4], specially in the Search Based Software Engineering (SBSE)
literature [21]. Evolutionary algorithms are based on the Theory of Evolution [9],
where the fittest individuals (solutions) survive and generate more offspring, thus
spreading their genes (decision variables of a solution) to more new individuals. The
idea behind these algorithms is to evolve a set of solutions through a number of
generations by means of crossover and mutation of their chromosomes [4].

In this paper we use the Non-dominated Sorting Genetic Algorithm II (NSGA-
II) [10]. NSGA-II is a strong elitist algorithm that in each generation creates a new
set of solutions (the offspring) based on their parents, joins the offspring with the
parents and sorts them according to their fitness. Therefore, at each generation, the
solutions that are non-dominated when compared to the other ones survive to the next
generation. When there are several non-dominated solutions and the next generation
cannot receive all of them, the solutions with the greatest crowding distance (more
scattered in the objective space) are selected to survive. Hence, this algorithm favors
both the solutions that have the best fitness values (convergence) and the solutions
that are more different (diversity). At the end of its execution, the algorithm returns
the best non-dominated solutions, so that the user can select the one that best fulfills
his/her needs.

In software engineering, the fitness functions are related to software metrics [20].
In software testing, a good solution can be a set of test cases that maximizes the
branch coverage of a software, while also generating little computational cost. For
software design problems, a solution can be an architecture that maximizes some
software principles, such as cohesion and coupling. In addition, these solutions can be
represented in several ways and be hard to optimize. Therefore, MOEAs are efficient
options for this kind of optimization.



Applying Design Patterns in the Search-Based Optimization of PLAs 5

MOA4PLA-Process 2014/06/03 powered by Astah 

MOA4PLA-Processact 

Construction of the PLA RepresentationDefinition of the Evaluation Model

Multi-objective Optimization

Transformation and Selection

 : PLA : Evaluation Measures

 : Constraints

 : Evaluation Model  : PLA Representation

 : Set of PLA Representations

 : Set of Potential PLAs
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3 Software Product Line Architecture Optimization

We can observe that the optimization of a PLA is a multi-objective problem, and to
deal with this difficult task the approach MOA4PLA [6] was proposed. MOA4PLA
applies MOEAs to optimize PLA designs, using software metrics as fitness functions.
At the end of its execution, MOA4PLA generates PLA designs with the best trade-
off between the selected metrics. MOA4PLA activities are shown in Figure 1 and
detailed next.

One of the first activities is the Construction of the PLA Representation. This ac-
tivity has as input the PLA, modeled as a class diagram. Hence, the goal is to optimize
an existing PLA, but without changing its external behavior. The class diagram must
be modeled with all the elements of the PLA, including the features, variabilities,
variants and variation points using SMartyProfile [26], a variability management pro-
file for UML-based PLAs. From this input, a representation is generated according to
the metamodel presented in Figure 2 [5].

The metamodel has all conventional elements of a class diagram (class, interface,
method, attributes, etc.) and also SPL specific elements (variability, variation point,
variant, etc.). Each element is associated with the SPL features that it realizes. A
variable element may be associated with a variability that has a variation point and
variants. As mentioned before, a feature is an important functionality that might be
common or variable for each product. Thus, a feature may not be associated to any
variability (e.g. mandatory feature for all products). Conversely, a feature can have
several variabilities to represent all its possible variations.

It is important to emphasize the separation of the UML class diagram and the
metamodel of Figure 2. The UML class diagram is a graphic representation (phe-
notype) of the architecture where the architect graphically depicts each element. In
this graphical representation, the architect is aided by the SMartyProfile notation for
designing SPL elements. On the other hand, the instantiation of the metamodel is
an object-oriented representation (genotype/chromosome) where each element is an
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Fig. 2 PLA representation metamodel (extracted from [5]).

object loaded in memory and can be easily manipulated by the algorithms. In other
words, the metamodel defines a general object-oriented structure for instantiating the
PLA in memory, which in turn is directly manipulated by the MOEAs. This is in fact
the actual chromosome representation (encoding) of the solution for our problem, in
contrast to other kinds of problems where the representation is usually an array of
integers, doubles or bits [4]. At the end of the MOA4PLA execution, this metamodel
instantiations loaded in memory (genotype) is converted back to a corresponding
graphical representation (class diagram/phenotype).

In the activity Definition of the Evaluation Model, the architect selects the met-
rics to be used in the optimization process in order to fulfill his/her purposes. These
metrics are used as fitness functions to guide the multi-objective optimization. In
this paper we used two predefined fitness functions presented in Table 2 [6]: i) CM
(Conventional Metrics) [43] – this function aggregates the metrics which aim at eval-
uating some basic design principles/attributes such as cohesion, coupling and size of
architectural elements; and ii) FM (Feature-driven Metrics) – related to the Feature-
driven Metrics [40] (specific for SPL), this function is an aggregation of metrics that
measure the attributes of feature scattering, feature interaction and feature-based co-
hesion, measuring the architectural feature modularization. The metrics used to com-
pose both fitness functions are briefly presented in Table 1.

In the next activity, Multi-Objective Optimization, the PLA representation and
the evaluation model obtained in the previous activities are used to optimize the PLA
design using a multi-objective algorithm selected by the architect. In this activity the
architect may inform if there is any constraint, such as discarding solutions containing
interfaces without operations or relationships. During the optimization process the
search operators are used to generate PLA alternatives.
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Table 1 Metrics suites available in MOA4PLA for the definition of fitness functions (table extracted from
[6])

Attribute Metric Definition
Conventional Metrics Suite (CM) [43]

Cohesion Relational Cohesion (H)
Average number of internal rela-
tionships per class in a component.

Coupling

Dependency of Packages (DepPack)
Number of packages on which
classes and interfaces of this com-
ponent depend.

ClassDependencyIn (CDepIn) Number of elements that depend on
this class.

ClassDependencyOut (CDepOut) Number of elements on which this
class depends.

DependencyIn (DepIn)
Number of UML dependencies
where the package is the supplier.

DependencyOut (DepOut)
Number of UML dependencies
where the package is the client.

Size
Number of Operations by Interface

(NumOps)
Number of operations in the inter-
face.

Feature-driven Metrics Suite (FM) [40]

Feature
Scattering

Feature Diffusion over Architectural
Components (CDAC)

Number of architectural compo-
nents which contributes to the real-
ization of a certain feature.

Feature Diffusion over
Architectural Interfaces (CDAI)

Number of interfaces in the sys-
tem architecture which contributes
to the realization of a certain fea-
ture.

Feature Diffusion over
Architectural Operations (CDAO)

Number of operations in the sys-
tem architecture which contributes
to the realization of a certain fea-
ture.

Feature
Interaction

Component-level Interlacing Between
Features (CIBC)

Number of features with which the
assessed feature share at least a
component.

Interface-level Interlacing Between Features
(IIBC)

Number of features with which the
assessed feature share at least an in-
terface.

Operation-level Overlapping Between
Features (OOBC)

Number of features with which the
assessed feature share at least an
operation.

Feature-based
Cohesion

Lack of Feature-based Cohesion(LCC)
Number of features addressed by
the assessed component

In [6] the authors implemented the following operators, which we call here PLA
Operators: i) Move Method – moves a method from one class to another and creates
a relationship between these classes; ii) Move Attribute – moves an attribute from
one class to another and creates a relationship between these classes; iii) Add Class –
creates a new class, moves a method of an existing class to it and creates a relationship
between these classes; iv) Move Operation – moves an operation from one interface
to another and makes the implementors of the former to implement the latter; v) Add
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Table 2 CM and FM calculation [6]

FM(pla) = ∑
p
i=1 LCC + ∑

f
i=1 CDAC + ∑

f
i=1 CDAI + ∑

f
i=1 CDAO + ∑

f
i=1 CIBC + ∑

f
i=1 IIBC +

∑
f
i=1 OOBC

CM(pla) = ∑
p
i=1 DepIn + ∑

p
i=1 DepOut + ∑

cl
i=1 CDepIn + ∑

cl
i=1 CDepOut + ∑

p
i=1 DepPack

p +

∑
it f
i=1 NumOps

it f + 1
∑

p
i=1 H

where p is the number of packages, it f is the number of interfaces, cl is the number of
classes and f is the number of features of a design pla

Package – creates a new package and an interface inside it, and moves an operation
to this interface; and vi) Feature-driven Operator – aims at modularizing a random
scattered feature into a new modularization package, that is, it moves the elements
associated to the feature to this new package. Moreover, all the model modifications
ensure that the structure of the PLA remains equivalent to the one given as input, i.e.,
the operators do not change the external behavior/meaning of the structure. This is
done by adding some minor operations to, for instance, add relationships between
classes that exchanged methods, so that they can still use their previously owned
methods. After the PLA alternatives are generated by those search operators, they
are evaluated by the fitness functions of the evaluation model. The output is a set
containing the best PLA representations (solutions), i.e., solutions with the best trade-
off between the objectives (fitness functions).

Finally, in the last activity, Transformation and Selection, the solutions are con-
verted to UML class diagrams in order to be readable by the architect. Then, a set of
potential PLA designs with the best trade-off between the objectives is given as out-
put. After this, the architect can select the one that better fits his/her organizational
goals and use it as the architecture of the SPL.

Experiments reported in the literature [6, 31] show that MOA4PLA contributes to
improve the original PLA, considering the objectives CM and FM. Works on search
based design of traditional architectures also show improvements with the application
of design patterns [3, 36, 38, 45]. However, MOA4PLA does not offer a support to
the application of design patterns. Both facts serve as motivation to the present work
that has as goal the application of such patterns in the MOA4PLA context, in order
to obtain better results. To this end, it is necessary first to determine which design
patterns can be applied with the MOA4PLA representation. This is the focus of a
feasibility analysis, described in the next section.

4 Feasibility Analysis

The feasibility analysis was conducted by the first author considering the main char-
acteristics of MOA4PLA and the requirements to automatically apply a pattern. First
of all, the approach is focused on class diagrams. Then the GoF patterns were cho-
sen, because they are easily applied to class diagrams by having well defined and
generic structures for object-oriented architectures [14]. Moreover, these patterns ap-
pear to be the most well-known design patterns and the most commonly used in the
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search-based literature [3, 36, 38, 45]. All GoF patterns were evaluated alone, one
after another.

Secondly, the design patterns application needs to be automatic for a pattern to
be considered feasible, since MOA4PLA is fully automated. Our main concern here
is that, if we let the algorithm select random elements and apply a design pattern
considering these elements, this would probably result in an unreasonable and indis-
criminate application. Design patterns are not solutions that can be used in any scope
of the architecture and should not be applied just for the sake of using design patterns
[8, 14]. Rather, a design pattern is a well-defined solution used for a common problem
and applied in architectural contexts/structures containing elements that can accom-
modate their application. These structures in this work are called “suitable scopes”
and are basically a group of classes, interfaces, methods, attributes and relationships
that form a suitable place for a design pattern application. In order to prevent the in-
discriminate application of design patterns and potentially the introduction of design
anomalies, in this work a design pattern is only applied in suitable scopes.

Considering both characteristics, we can summarize the main factors that guided
our analysis as follows. More details can be found in [18]:

– Structure of the design pattern: analyzed to determine possible scopes for the
pattern application, considering the PLA representation given by the MOA4PLA
metamodel;

– Consequences: we analyzed the main consequences resulting from the pattern
application, for instance: impact on cohesion and coupling;

– Applicability in PLAs: the pattern may have a specific application for conven-
tional software architectures, but not necessarily for PLAs;

– Flexibility and implementation aspects: different implementation strategies or
other aspects may prevent the automated application of design patterns. For in-
stance, a design pattern may demand behavioral information (about the scope in
which it will be applied) that is not representable in class diagrams.

We consider a pattern as feasible if: it is possible to automatically identify a suit-
able scope for its application, and the pattern benefits the PLAs in terms of cou-
pling [44], cohesion [44], PLA extensibility [33] and Feature-driven Metrics [40].
In some cases, a pattern, even with an identifiable suitable scope, is considered in-
feasible if its application does not bring any benefit for the architecture considering
the impact in some quality measures used in the evolution process of MOA4PLA.
In other cases, some design patterns that have suitable scopes for their application
in conventional architectures, do not have specific application scopes for PLA. How-
ever, the pattern that does not have a particular PLA context to be applied is not
necessarily infeasible because it can still be applied to a PLA in scopes without SPL
elements.

As a result of the analysis conducted, we concluded that all Creational patterns
are infeasible. This is because they are appropriate to create objects and are applied
to a low range of scopes. It is also difficult to automatically identify suitable scopes
for Behavioral patterns using only class diagrams. Five of them could be feasible if
interaction or other behavioral diagrams were considered (Template Method, Chain
of Responsibility, Observer, Command and Visitor). Structural patterns are more suit-
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able in the MOA4PLA context, since they are more compatible with the architecture
representation used and have a structure that impacts on coupling and cohesion met-
rics.

Memento is an example of infeasible pattern. To identify its scope, it is neces-
sary to automatically identify which types of objects can and should have their states
stored for further use. The proper diagram for this type of identification is the state
machine diagram. In addition to this, its application without such behavioral infor-
mation would not bring significant influence to the architecture evolution process by
means of improvement on the considered metric values, since it has a very specific
purpose of solving a state storing problem. At the end, we have found four feasible
patterns: Bridge, Strategy, Facade and Mediator. Suitable PLA scopes could be iden-
tified only for Bridge and Strategy. A brief description of the feasible patterns are
presented next.

– Strategy: It aims at making a specific algorithm to vary independently of the
clients that use it. It defines a strategy interface or abstract class for an algo-
rithm family, in order to make these algorithms interchangeable [14]. In PLAs,
the Strategy pattern can be used to allow an easy interchange of variants in a
variation point.

– Bridge: This pattern is used to detach the abstraction from its implementation. An
implementation element determines what functionality must be executed, whereas
an abstraction element determines how it must be executed. By using it the ar-
chitect can vary both independently without using class inheritance, and conse-
quently decreasing the coupling level between the elements [14]. In PLAs, the
Bridge pattern can be used to extract implementation interfaces of features from
the variants of a variation point and to allow a dynamic execution of these fea-
tures.

– Mediator: It defines an intermediary class (mediator class) in order to encapsulate
how a set of elements (colleagues) communicate. It promotes a weak coupling
between colleagues that have strong or complex relationships [14].

– Facade: It defines a unified interface (facade class) for a set of interfaces of a sub-
system. It makes the subsystem easier to use by encapsulating its main operations
in a higher layer interface [14].

5 Defining Suitable Scopes: PS and PS-PLA concepts

To define a mutation operator that is capable of successfully applying design patterns
in the context of MOA4PLA, some challenges must be overcome. The following
requirements must be ensured for a consistent design pattern application:

1. The pattern is applied into a suitable scope of the architecture;
2. The applied pattern is coherent and does not bring any anomaly to the architec-

ture;
3. The pattern is effectively applied as a mutation in the evolutionary process; and
4. The identification of the suitable scopes and the application of the design patterns

are totally automated, i.e., the application does not require user participation.
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Fig. 3 Metamodel representing PS and PS-PLA.

In order to satisfy these requirements, it is first necessary to provide an easy way
to visualize and deal with the suitable scopes for each pattern during the mutation
process. To this end, we define a generic metamodel (Figure 3) that can structurally
represent suitable scopes and the other elements related to them. This metamodel
complements the MOA4PLA metamodel (Figure 2).

If a scope is suitable for the application of a design pattern, it is called “Pattern
application Scope” (PS). The notation “PS<Pattern Name>” is used to designate a
scope for a specific design pattern, for example, PS<Strategy>. It is important to
highlight that a scope may be a PS for more than one design pattern. In this case, any
of the feasible patterns for this scope can be applied.

In addition to the PS specification, there is another category of PS, specific for
SPL scopes: “Pattern application Scope in Product Line Architecture” (PS-PLA). It
is named in the same way as a PS: “PS-PLA<Pattern Name>”.

A PS/PS-PLA is a scope composed by at least one architectural element, which
in turn may be present in multiple PSs/PSs-PLA. In fact, for a scope to be consid-
ered a PS to a particular design pattern, it needs to meet all PS requirements that
this particular design pattern requires. In addition, for a scope to be considered a
PS-PLA, besides meeting all PS requirements, it needs to meet also the PS-PLA re-
quirements of the design pattern. These requirements were extracted in the feasibility
analysis and are incorporated into verification methods called “verify” (presented in
Section 6) used by the proposed mutation operator. Moreover, when a pattern is ap-
plied using its “apply” method, it may influence some software metrics that are used
by the evolutionary algorithms to evaluate the fitness of the achieved solutions.

Regarding the relation between PS and PS-PLA, next we present some points
about the application of a given design pattern X:

1. A PS-PLA<X> is obligatorily a PS<X>. If by any reason a scope is not a PS<X>,
it cannot be in any circumstance a PS-PLA<X>;

2. A PS<X> is not necessarily a PS-PLA<X>. If by any reason a scope is not a
PS-PLA<X>, it can still be a PS<X>;

3. A given pattern X can be applied to any PS<X>, regardless the type of the archi-
tecture of the scope (conventional or PLA);

Each feasible pattern has its PS and PS-PLA represented by an instantiation of
the metamodel depicted in Figure 3. In Figure 3 the elements “PS Requirement”
and “PS-PLA Requirements” are abstractly depicted as a single element, but they
are actually composed by several elements that define what a scope must have to be
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suitable. We present next the PS and PS-PLA representation of all feasible patterns,
except Facade. Even though we considered Facade feasible, we did not implement
this pattern in this work due to limitations of the framework used to create the dia-
grams (Papyrus). For instance, Facade would require a subsystem in the diagram, but
Papyrus does not have the option to include a subsystem as defined in the UML man-
ual [39] (using the «subsystem» stereotype). Another reason to let Facade out of this
work is that we do not have any PLA class diagram with subsystems in it available
for experimentation, so we would not be able to evaluate such a pattern application.
It should be addressed in future work by using other frameworks and SPLs.

Figure 4 presents the representations of PS<Strategy> and PS-PLA<Strategy>.

Fig. 4 Metamodel representing PS<Strategy> and PS-PLA<Strategy>.

The architectural elements encompassed by PS<Strategy> and PS-PLA<Strategy>
are a Context, which uses at least one Class or Interface. These classes/interfaces
should be part of an Algorithm Family, so that Strategy can abstract such a family
from the Context point of view. For PS-PLA<Strategy>, Context must be a variation
point and the Classes/Interfaces from the Algorithm Family must be variants. By ab-
stracting a PS-PLA<Strategy> with the application of a pattern, we can decouple the
variation point from its variants.

Figure 5 presents the representations of PS<Bridge> and PS-PLA<Bridge>.
The requirements of PS<Bridge> and PS-PLA<Bridge> are very similar to the

requirements of PS<Strategy> and PS-PLA<Strategy>, except that Bridge requires
at least one common concern assigned to the classes and interfaces of the algorithm
family. It is important to note that in SPL Engineering a “concern” can be considered
a feature. Thus, an element is associated with a concern when it fully or partially
realizes a feature (SPL) or a functionality (non-SPL software). In this work we iden-
tify concerns in a class diagram by using stereotypes in each associated element. An
element is said to be associated with a concern if it is annotated with the respective
stereotype, such as «concern X» in the example of the figure. For classes, interfaces
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Fig. 5 Metamodel representing PS<Bridge> and PS-PLA<Bridge>.

and packages, they are also said to be associated to the concerns of their inner el-
ements, such as methods, attributes and contained classes/interfaces (for packages).
These stereotypes must be set by the user in the input PLA. The concept of con-
cerns is used by the Bridge and Mediator methods in their scope identification and
in their application. By identifying a common concern, we can identify a common
functionality to abstract using Bridge.

Figure 6 presents the representations of PS<Mediator>. Even though Mediator
does not have PS-PLA, the Mediator pattern can still be used in PLAs.

Fig. 6 Metamodel representing PS<Mediator>.

The elements encompassed by PS<Mediator> are at least one “ArchitecturalEle-
ment” (class/interface) with at least two usage relationships (“Relationship” element
with a «use» stereotype). Another requirement here is that the classes/interfaces rep-
resented by “ArchitecturalElement” must have at least one concern in common («con-
cern X» stereotype) and with at least two usages between such elements.



14 Giovani Guizzo et al.

By instantiating the PS and PS-PLA metamodels, we are able to extract informa-
tion, for example, about relationship rules (such as multiplicity), element roles in the
design pattern structure and type of elements to receive the mutation. This aided the
development of methods for identification of suitable scopes and application of the
patterns, used by the mutation operator and presented in next section.

6 The Pattern-Driven Mutation Operator

Algorithm 1 presents the Pattern-Driven Mutation Operator (PDMO), first intro-
duced in [19]. It has as input the architecture to be mutated (A) and a mutation prob-
ability (ρmutation). In the first step, a design pattern DP is randomly selected from the
set of feasible patterns (line 2). After this, the mutation operator obtains a scope and
store it in S by randomly selecting a set of architectural elements (classes, interfaces,
packages and their inner elements) from A (line 3).

Algorithm 1 Pseudocode for the mutation operator
Ensure: A - Architecture to be mutated; ρmutation - Mutation probability.

DP← randomly select a feasible design pattern;
S← randomly select a set of architectural elements from A;
if DP.veri f y(S,ρpla) and ρmutation is achieved then

DP.apply(S);
end if
return A

The verification method verify of DP checks if the scope S is a PS/PS-PLA for
the design pattern DP (line 4). The parameter ρpla is a value used to determine if
the verification method of DP will consider the PS or the PS-PLA requirements.
If ρpla is not achieved, then the PS requirements are used, otherwise, the PS-PLA
requirements are used. This value is randomized every verification by default, or it
can be predefined by the user. Either way, if the verification method returns true and
the mutation probability ρmutation is achieved, then the design pattern DP is applied
to S (line 5) using its apply method. At the end, the architecture A is returned (line 7),
whether it was mutated or not.

Each feasible design pattern has its own verification and application methods.
These methods are the key components of the proposed mutation operator, since they
are the ones that verify the suitability of a scope and actually apply the mutation. We
present respectively the verification and application methods of Strategy, Bridge, and
Mediator in the next subsections.

6.1 Verification Methods

Each feasible design pattern has a verify method for the PS or PS-PLA verification.
This method receives a scope S as parameter and does several verifications on its
architectural elements to check if S is suitable to receive the application of DP. In



Applying Design Patterns in the Search-Based Optimization of PLAs 15

other words, the verify methods scan the scope S to check if the elements comply with
the PS or PS-PLA requirements of DP. Hence, it is divided in two main procedures:
the PS verification and the PS-PLA verification. The PS-PLA verification is only
used when the ρpla probability is achieved and if the design pattern can be applied to
PS-PLA scopes. In this work only Mediator does not have PS-PLAs, therefore it is
always applied to PSs.

The PS<Strategy> verification checks if the S scope has an algorithm family in
its structure, and if the algorithms from this algorithm family are being used by at
least one external element (context role). Furthermore, context must use these algo-
rithms with a dependency or a usage relationship. In this work an algorithm family is
characterized by at least two classes and/or interfaces with: i) a same suffix in their
names; ii) a same prefix in their names; or i) at least one method in common, i.e., a
method with a same name and return type. We used names and methods as source
of similarity identification because of the limitations of class diagrams in denoting
behavior. A class diagram is a type of static diagram [39] that mainly displays struc-
tural information. Hence, we believe that names and methods are some of the most
reliable ways to identify an algorithm family. For example, an algorithm family for
sorting algorithm classes (e.g. BubbleSort, QuickSort and ShellSort) can easily be
identified by the suffix “Sort” in the name of the classes, or by a common “sort”
method. The definitions of what is an algorithm family may vary from one author to
another depending mainly on their aesthetic comprehension and design preferences.

The PS<Bridge> verification is similar to the PS<Strategy> verification, with the
addition of one rule: at least two algorithms of the algorithm family must have at least
one common concern associated with them. By adding this rule we can identify ele-
ments with similar functionalities and create an abstraction for them. This common
concern does not need to be a SPL feature but merely a functionality annotated by the
user in the design time, thus a non-SPL software is also included in this verification
as the PS concept suggests.

The PS<Mediator> verification also uses the concern concept. A scope is a PS<Me-
diator> if it has at least two classes and/or interfaces, with at least two dependencies
or usages between them and with at least one concern associated with them. If a scope
meets these criteria then it has a set of colleagues with similar functionalities and a
potential high dependency among them. If that is the case, then the Mediator pattern
can be used to mediate their communication. A lower minimum number of relation-
ships between the colleagues may cause the addition of unnecessary complexity by
the Mediator pattern.

Finally, for both PS-PLA<Strategy> and PS-PLA<Bridge> verifications, there
must be at least one context that is a variation point, and the algorithms used by this
context must be variants.

These criteria do not ensure that a design pattern will only be applied in suitable
scopes, since there can be scopes that satisfy all rules and yet would not be considered
suitable by some designers. Instead, we designed and implemented these verification
methods in order to decrease the number of indiscriminate applications of design
patterns throughout the optimization process, and consequently to provide a good
design quality for the PLAs. If S is evaluated as a PS<DP> or a PS-PLA<DP>, S can
receive the pattern DP. This is done by the apply methods, presented next.
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Fig. 7 Strategy application example (before mutation).

6.2 Application Methods

The apply method is the one that actually mutates the architecture by adding, remov-
ing or changing architectural elements. Each application method first verifies if the
design pattern is already applied to the scope. If its design pattern is not yet applied
in the scope, then a new instance is created. On the other hand, if there is a design
pattern instance in the scope, then this instance receives minor adjustments in order
to be reused by the operator. For example, if the scope has a Strategy interface and the
Strategy design pattern was selected to be applied to that scope, then the application
method will make any new element to implement the existing interface instead of
creating an unnecessary interface for the algorithm family. In addition, after a design
pattern is applied, all elements that take roles in the pattern structure receive a stereo-
type annotation for that design pattern. This annotation helps a further identification
of applied patterns.

Strategy application method

Figures 7 and 8 present, respectively, an example of a PS-PLA<Strategy> to be mu-
tated and the scope mutated with the Strategy apply method. Besides the conventional
elements of a UML diagram [39], the diagrams also show some specific SPL elements
using the SMarty notation [33]. Briefly, using SMarty the architect describes a vari-
ability in an UML comment, indicates a variation point using the «variationPoint»
stereotype, and depicts several types of variants using other stereotypes.

As seen in Figure 7 the scope is a PS-PLA<Strategy> because there is a context
element (“Client”) that uses two algorithms (“ClassA” and “ClassB”) of an algorithm
family. In fact, “Client” is considered a context element just because it uses elements
of the algorithm family, and thus can have its internal behavior changed by changing
the concrete algorithm it uses. Furthermore, these are algorithms of a same algo-
rithm family because they have a common prefix (“Class”) and a common method
(“method”). Also, the context element is a variation point (annotated with «variation-
Point») and the algorithms are variants (annotated with «variant»). Figure 8 shows
the resulting scope.

In order to achieve this result, the following steps are performed by the Strategy
apply method:
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Fig. 8 Strategy application example (after mutation).

1. Create a Strategy interface for the algorithm family;
2. Declare in the Strategy interface all methods of all algorithm elements;
3. Make the algorithm elements to implement the interface;
4. Make all context and other elements that use the algorithms to use the interface

instead of using the algorithms;
5. If the architecture being mutated is a PLA and there is a variability whose variants

are all algorithms of the algorithm family, then move the variability to the Strategy
interface and define it as the variation point of the variability;

6. Annotate the context element, Strategy interface and all algorithms, with the
«strategy» stereotype.

The first step is to create a Strategy interface if there is no such interface yet. In the
example the “ClassStrategy” was created to abstract all algorithms of the algorithm
family. After that, all methods of the algorithms are declared in the interface and the
algorithms implement the interface. As explained in [14], the Strategy interface must
declare all methods of all algorithms, even though some of these methods will never
be implemented by all of them. In that case, when a class has to declare an unused
method from its Strategy interface, it does not need to really implement the method,
but rather leave the method in blank.

Instead of using each algorithm directly, the context element uses the interface
after the mutation, thus reducing the coupling between it and the algorithms. Because
there is a variability linked to the context element and all algorithms are variants,
then this variability must be moved to the interface in order to preserve the direct
link between variabilities, variants and variation points. Finally, these elements are
all annotated with the Strategy design pattern specific stereotype («strategy»).

Bridge application method

Similarly to the Strategy mutation, Figures 9 and 10 show respectively an example
before and after the Bridge mutation using the apply method. Figure 9 shows the
PS-PLA<Bridge> to be mutated.
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Fig. 9 Bridge application example (before mutation).

Fig. 10 Bridge application example (after mutation).

As seen in the diagram, “Client” is the context element that uses both classes
“ClassA” and “ClassB” with a usage relationship. These classes are algorithms of
an algorithm family and they are variants, same as in the Strategy example. The dif-
ference here is the common concern “concern X” given for both algorithms, which
enables the characterization of the scope as a PS-PLA<Bridge>. Figure 10 presents
the expected result of the Bridge application.

To obtain this result, the Bridge apply method follows the steps below:

1. Create an abstract class abstraction for the elements of the algorithm family and
declare in this class all methods of these elements;

2. For each concern associated with at least two algorithms of the algorithm family,
create an implementation interface declaring all methods (of the algorithms) that
are associated with the concern;

3. Make each algorithm to implement the implementation interfaces created for its
concerns;

4. Make abstraction to aggregate all implementation interfaces;
5. Create a default concrete class and make it to extend abstraction;
6. Make all context and other elements that use the algorithms to use abstraction

instead of using the algorithms;
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7. If the architecture being mutated is a PLA and there is a variability whose variants
are all algorithms of the algorithm family, move the variability to the implemen-
tation interfaces and set these interfaces as variation points;

8. Annotate with «bridge» all algorithms, all implementation interfaces, the abstrac-
tion class and the default concrete class.

The first step is to create the “ClassAbstraction” abstract class (abstraction role)
for the algorithm family. This abstract class must declare all methods of the algo-
rithm family, such as a Strategy interface does. In addition, for each concern asso-
ciated with at least two algorithms, then an implementation interface is created for
this concern and the methods that are associated with this concern must be declared
in the interface. In the example there is only one implementation interface (“XImple-
mentation”), which was created for “concern X”. This interface is implemented by
both algorithms, because they share “concern X”. Furthermore, “ClassAbstraction”
must aggregate all implementation interfaces and the concrete class “ClassAbstrac-
tionImpl” is created to extend the abstraction class. This concrete class must have
a default behavior to define how each algorithm is executed. The context elements
should only use the abstraction class, so that they can be decoupled from the con-
crete classes.

By doing this mutation, the abstraction class can vary each concrete object ag-
gregated through the interfaces. This implies in a free and runtime variation of which
class realizes each concern, since a concern is abstracted by its own implementation
interface. For instance, if there was another common concern for both algorithms in
the example, there would be another implementation interface and the abstraction
class would aggregate two interfaces. Therefore, a single object of a class that im-
plements both interfaces could be used to realize both concerns, or two objects of
different classes could be used to realize one concern each.

Even though some methods are repeated in the abstraction class and in their re-
spective implementation interface, there is a crucial difference between each declara-
tion. While a given method declared in an implementation interface determines what
functionality should be implemented by the implementors of that interface, the same
method declared in the abstraction class determines how this functionality must be
used. Therefore, the latter can have a template body in the abstract class and a more
specialized behavior for each concrete class that extends abstraction.

Mediator application method

For the Mediator example, Figure 11 presents a PS<Mediator> to be mutated. We
used in this example a PS instead of a PS-PLA, because Mediator does not have
PS-PLA scopes in our work.

This scope contains some colleagues (“ClassA”, “ClassB”, “ClassC” and “ClassD”)
with usage relationships in several directions. In addition, all colleagues are associ-
ated with a common concern (“concern X”). Therefore, this is a PS<Mediator>. The
main purpose of applying the Mediator pattern here is to decrease the coupling be-
tween the colleagues by delegating the communication responsibility to a new class.
Figure 12 shows the mutated scope.
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Fig. 11 Mediator application example (before mutation).

Fig. 12 Mediator application example (after mutation).

For the Mediator pattern application we used the Event of Interest implementa-
tion. This implementation defines a class to encapsulate the details of a communica-
tion event between colleagues, and to be used by the Mediator class. The Mediator
apply method performs the main steps as follows:

1. Create the “EventOfInterest” class;
2. For each common concern associated with at least two elements with at least two

dependencies and/or usage between them, create:
(a) A Mediator interface;
(b) A default Mediator class;
(c) A Colleague interface;

3. Make each colleague to implement the Colleague interfaces created for its con-
cerns;

4. Create an action method for the Mediator interface and class. This method has as
parameter an object of the “EventOfInterest” (identifies the event) class;

5. Add to the Colleague interfaces a method to attach and another to detach a Me-
diator object. This method defines which object must be used to intermediate the
communication between the colleagues;

6. Make the Colleague interfaces to use their respective Mediator interface;
7. Make the Mediator class to directly use each one of its respective colleague;
8. If a colleague has only concerns that have Mediators, then make this colleague to

stop being used by any other element that is not a Mediator class and make the
elements to use the Mediator interfaces instead of using the algorithms;
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9. If the architecture being mutated is a PLA, then move all variabilities that have
only colleagues as variants to the respective Colleague interface and set this in-
terface as a variation point;

10. Annotate all colleagues, the Mediator class, the Mediator interface and the Col-
league interface with the «mediator» stereotype.

In the example only one Mediator interface (“XMediator”), one Mediator class
(“XMediatorImpl”) and one Colleague interface (“XColleague”) were created be-
cause there is only one concern for the colleagues. The Mediator interface has a single
method named “concernXAction” with a single parameter of the “EventOfInterest”
class. This method is responsible for receiving the “EventOfInterest” object that iden-
tifies the communication between colleagues. Therefore, when a colleague needs to
send a message to another, it creates the “EventOfInterest” object, fills its properties
with useful data and invokes the action method of the “XMediator” interface. Then
the Mediator object receives the event object, identifies the receiver and proceeds to
conclude the interaction. Optionally, the architect may define communication rules
in the Mediator class, or even create several classes with different communication
handling. This allows a runtime changing of communication behavior.

One of the rules of the Mediator pattern is that the Mediator class must use each
colleague directly. In addition, as Gamma et al. defined in [14], the Mediator interface
can be used as a Facade. Therefore, instead of using the colleagues directly, other
elements will now use the Mediator interface.

The Mediator pattern may seem to bring more coupling to the structure by adding
some relationships between the Mediator elements and the colleagues. However,
these relationships introduce an overall weaker coupling between these elements than
relationships between colleagues. On the other hand, the Mediator application may
cause the architecture to be less understandable, given the introduced complexity.

Each design pattern is applied to a scope disregarding the existence of other de-
sign patterns in that same scope. Therefore, the application of one design pattern can
disrupt the structure of other design patterns instances. To evaluate if cases like this
really occur and if the proposed operator is beneficial for the search-based optimiza-
tion of PLAs design, we conducted an empirical evaluation with some SPLs. This
empirical evaluation is described in the next section.

7 Empirical Evaluation

The empirical evaluation presented in this section is concerned in answering the fol-
lowing general research question: “Does the automatic application of design patterns
using PDMO contribute to improve the PLA design?”. To answer this question, we
conducted quantitative and qualitative analyses. We are also interested in observing
Mediator applications, since this is a new design pattern application introduced in
this paper.

In the quantitative analysis, we compared the fitness values obtained by the de-
sign pattern application with the values of the original PLAs and with the values of
the solutions found by MOA4PLA. In these comparisons we evaluated the generated
Pareto fronts and used the hypervolume indicator [47] and the Euclidean Distance to
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the ideal solution (ED) [23]. The main purpose of these comparisons is to determine
the capability of Pattern-Driven Mutation Operator to improve the PLAs and the
results of MOA4PLA in terms of software metrics and solutions diversity. We chose
the hypervolume indicator because we do not know the true Pareto front for the PLAs
and because we want to evaluate the results regarding both fitness and diversity. Fur-
thermore, this indicator is Pareto compliant [48] and can be used to differentiate the
generated fronts when they overlap. The ED indicator was used as a tie-breaking
technique for identifying the best non-dominated solution of a Pareto front. Finally,
the Friedman test was used to determine if there is statistical difference between the
results of each set of results.

In the qualitative analysis, we analyzed one architecture among the generated,
since a manual analysis of all solutions would be infeasible. The objective is to assess
for that solution: i) its quality; ii) if the solution is useful for the architect; iii) if the
design patterns were correctly applied in suitable scopes; and iv) if any inconsistency
(anomaly) was observed in the PLA design after the optimization.

7.1 PLAs used in the evaluation

We used four PLAs: i) AGM (Arcade Game Maker) [24] is an SPL created for sup-
porting the learning and experimentation of product lines. This PLA encompasses
three arcade games: Brickles, Bowling and Pong; ii) MOS (Microwave Oven Soft-
ware) [17] is an SPL that offers options for basic to top of the line microwaves. It
has some features such as display language selection and predefined recipes for fast
cooking; iii) MM (Mobile Media) [7] is an SPL for the media management of mo-
bile devices, supporting music, video and photo; and iv) ETC (Electronic Transport
Cards) [12], which is used for the management of electronic transport cards in urban
transportation, mainly commercial, having several features such as payment, itinerary
and ticket management.

We used two objectives associated with the CM and FM functions, described in
Section 3. Table 3 presents some details about each PLA, such as the original FM and
CM values, number of packages, classes, interfaces and variabilities.

Table 3 PLAs details

PLA Fitness (FM, CM) Packages Interfaces Classes Variabilities

AGM (789.0, 6.1) 9 15 31 5

MOS (567.0, 0.1) 14 15 26 10

MM (221.0, 0.3) 8 15 10 7

ETC (742.0, 0.02) 56 30 115 8

Among all used PLAs, AGM has the greatest value of feature scattering and in-
teraction, while MM has the lowest. MOS has the lowest CM value and AGM has the
greatest. The optimization focuses on minimizing the fitness values of the PLAs.
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7.2 Experiment Description

To answer the research question we used NSGA-II [10] as MOEA for MOA4PLA,
and conducted three experiments: i) Product Line Architecture Mutation (PLAM)
encompassing all MOA4PLA Operators (called here PLA Operators); ii) Design Pat-
tern Mutation (DPM) encompassing only the Pattern-Driven Mutation Operator; and
iii) Product Line Architecture and Design Pattern Mutation (PLADPM) encompass-
ing all MOA4PLA Operators and the Pattern-Driven Mutation Operator. Ultimately,
the objective of comparing such different experiments is to asses if the usage of de-
sign patterns can contribute to the MOA4PLA approach (PLAM experiment).

If the experiment being executed is PLAM, then a random mutation operator (out
of six available ones) is applied in each recombination (if the mutation probability
is achieved). For DPM, only the Pattern-Driven Mutation Operator is available, thus
it is the only mutation possibility. For PLADPM, a random operator is used (out
seven, six MOA4PLA operators plus the Pattern-Driven Mutation Operator). In or-
der to avoid the disruption of design pattern instances and the introduction of design
anomalies, we added a restriction to forbid the application of any PLA Operators
in elements that have roles in a design pattern structure. The identification of a de-
sign pattern structure is aided by the stereotypes created by the application methods
(Subsection 6.2).

The initial population is composed by one solution with the original PLA design,
and by other solutions that are derived from the application of random mutation oper-
ators in the original PLA design, as done by Colanzi et al. [6]. Thus, each experiment
uses its available operators to generate the initial population.

Each experiment had 30 independent runs executed for each problem (in this work
a problem is a PLA design). At the end of the runs, each experiment obtained for each
PLA a known Pareto front (PFknown) composed by all non-dominated solutions found
during its 30 runs for that PLA. Because we do not know the real true Pareto fronts of
the PLAs, we composed an approximation of the true Pareto front (as recommended
in [48]) for each PLA by joining all non-dominated and non repeated solutions from
each PFknown found for the PLA. This approximation is called here simply as PFtrue.

7.3 Parameter Tuning

In our parameter tuning, we adjusted the following parameters: Population Size and
Max Evaluation Number. Each parameter was adjusted for each PLA and each ex-
periment, since it is common, values do differ depending on the problem [2].

According to the experiments of Colanzi et al. [6], 90% is the most adequate
value for the mutation probability for the type of problem of this work. This value
is the most suitable because if a lower value is used, too many solutions will not be
modified throughout the generations and the quantitative results would be spoiled,
because the mutation is the only source of design evolution. On the other hand, a
greater value would deteriorate the quality of the design and make the evolutionary
process to be like a random one. Therefore, we fixed the mutation probability as 90%.
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For the population size, we adjusted the values 50, 100 and 200, which are the
most used values in the literature [2]. In this work, the stop criterion is the maximum
number of fitness evaluations. According to Arcuri and Fraser [2], this parameter
must be adjusted when it is the stop criterion. The first step is to obtain a default
value, and to generate a value that is one-tenth and another that is ten times this
default value. Based on the work of Colanzi et al. [6], the maximum number of fitness
evaluations for this tuning are: 3,000, 30,000 and 300,000.

That way, using the values defined, we created 108 combinations of parame-
ters/PLA/experiment (4 PLAs * 3 experiments * 3 population size values * 3 max fit-
ness evaluations values) and we executed each combination 30 times. We then chose
the best configuration for each experiment for each PLA regarding the hypervolume
indicator [47] and the Friedman test with 95% significance [11]. For each experiment
and each PLA, we chose the configuration that was the fastest to be executed and that
yielded statistical better or equivalent results to the best hypervolume. By doing this
we ensured the usage of configurations that generated good results and that are fast
to be executed. Table 4 presents the best configurations obtained.

Table 4 Best configurations obtained with the tuning

Experiment PLA Population Size Max Fitness Evaluations

PLAM

AGM 200 30.000

MOS – –

MM 50 30.000

ETC 50 30.000

DPM

AGM 50 30.000

MOS 50 300.000

MM 50 30.000

ETC 100 30.000

PLADPM

AGM 200 30.000

MOS 50 30.000

MM 50 30.000

ETC 200 30.000

* Row with a dash symbol represents the inability of PLA optimization by the referred experiment.

The first column of Table 4 shows the experiments, followed by each available
PLA in the second column. The columns three and four show respectively the popu-
lation size and the maximum number of fitness evaluations obtained in the tuning.

There is a peculiarity regarding the MOS PLA: the PLAM experiment could not
optimize its design. In this case, the original PLA dominated all the solutions gener-
ated by the PLAM experiment for all configurations. Therefore, in the comparisons
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regarding the MOS PLA, the hypervolume value of the PLAM experiment is the hy-
pervolume of the original PLA.

7.4 Threats to Validity

We identified some threats that can invalidate the obtained results:
Size of the Problems: The PLAs used in this study have a relatively small num-

ber of elements. However, the majority of PLAs do not have class diagrams as main
model for their representation, or their class diagrams could not have been provided
by their developers due to copyright reasons. This hindered the search for other prob-
lems. The usage of bigger problems could provide a more significant sample of real
world problems and present different experimental results.

Initial Population: The population initialization is a factor that must be evalu-
ated. A well designed initialization can lead to better results and a greater solution
diversity. In this work the initial population is created using only the mutation opera-
tors available for each experiment. Other strategies could be analyzed, such as giving
to all experiments the same initial population. However, this is a subject of discus-
sion for future work with a deeper and careful analysis focused exclusively on it. We
adopted the same approach from related work [6], where the population initialization
is based on the input PLA. This generates an initial population that is not very dif-
ferent from the original PLA, in order to ensure the SPL functionality. We did this to
enable comparison and to ensure that we are evaluating only the performance of each
set of operators independently, i.e., not letting the results be modified by external
factors such as an initial population that favors one kind of operator over another.

Software Metrics and Objective Functions: We observed a certain inability from
the metrics and objective functions for capturing some design problems in the ar-
chitecture. For instance, a Strategy interface may declare several methods that are
implemented by all its implementors. Despite that being foreseen and justified in the
GoF catalog [14], this can lead to a creation of interfaces overloaded with operations
and an indiscriminate responsibility assignment for the elements of the algorithm
family. Perhaps other software metrics or even the same metrics used in different
objective functions could capture this and other design problems, and thus the opti-
mization process could discard/correct the solutions during its execution. The usage
of other metrics and the composition of other objective functions are subjects that
might be evaluated and treated in future work. Finally, this issue is not exclusive to
our work, but rather a recurrent problem in the search-based software engineering
field, specially for the design and refactoring tasks [42].

8 Results and Discussion

This section presents the results and the quantitative and qualitative analyses per-
formed.
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8.1 Quantitative Analysis

The quantitative analysis takes into account the fitness values of the solutions of
each experiment. First we plotted the obtained fronts, and then we used the hyper-
volume [47] and the Euclidean Distance to the ideal solution (ED) [23] indicators
to evaluate the quality of these fronts. After this, we present the execution time of
each algorithm. Finally, we discuss what we observed with these experiments in a
discussion section.

8.1.1 Pareto Fronts Results

Table 5 presents some details about the obtained Pareto fronts. The second column
presents the number of solutions in its PFtrue. Columns three, four and five show re-
spectively the number of solutions in the PFknown found by the experiments PLAM,
DPM and PLADPM. The number between parentheses shows the quantity of solu-
tions from PFknown that are also in PFtrue. The best values are highlighted in bold.

Table 5 Pareto fronts details

PLA PFtrue
PFknown

PLAM DPM PLADPM

AGM 53 30 (22) 32 (0) 46 (32)

MOS 37 1 (1) 37 (36) 26 (3)

MM 46 6 (6) 31 (0) 45 (42)

ETC 102 6 (6) 92 (82) 94 (18)

As seen in Table 5, using the Pattern-Driven Mutation Operator (both DPM and
PLADPM), it is possible to obtain a greater number of non-dominated solutions. The
number of solutions found by DPM and PLADPM is always greater when compared
to PLAM. Figures 13(a), 13(b), 13(c) and 13(d) present respectively the PFknown
found by each experiment for AGM, MOS, MM and ETC.

Despite some PFknown fronts being close, it is possible to note that in every sub-
figure of Figure 13 and in the values of Table 5, the fronts obtained by the PLAM
experiment (only the MOA4PLA operators) are always less diversified. In addition,
for the PLAs AGM, MM and ETC the original architecture is dominated by at least
one solution with design patterns (experiments DPM and PLADPM). For the MOS
PLA, the original design was kept as a non-dominated solution, but it did not prevent
the discovery of new non-dominated solutions using design patterns. In this case, the
optimization process at least gave to the architect other options equally good (non-
dominated). Another interesting point here is that, as mentioned in the last section,
PLAM was not able to optimize MOS. However, as seen in Table 5, PLAM obtained
one non-dominated solution and this solution is present in PFtrue. In fact, that spe-
cific solution obtained by PLAM is the original PLA itself, which was given as input,



Applying Design Patterns in the Search-Based Optimization of PLAs 27

(a) AGM (b) MOS

(c) MM (d) ETC

Fig. 13 PFknown found by the experiments.

added as an initial solution in the initialization process [6], and survived during the
whole evolutionary process until it was returned as the only non-dominated solution
by that experiment.

8.1.2 Hypervolume Results

Since the PFknown fronts overlap on some points, we provide another way to analyze
the results by using the hypervolume indicator. Table 6 presents the hypervolume av-
erages achieved by each experiment from its 30 executions. The best averages are
highlighted in bold, and the values with an equal (“=”) symbol represent values with
statistical equivalence in their hypervolumes (all 30, not average) for that problem
using the Friedman test with 95% significance [11]. We also normalized the fitness
values before executing the hypervolume calculation. Some hypervolume values are
over 1 because we fixed the reference point as “1.1, 1.1” (worse than the worst nor-
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malized values). Figures 14(a), 14(b), 14(c) and 14(d) present the boxplot graphs for
the obtained hypervolumes respectively for the PLAs AGM, MOS, MM and ETC.
These graphs support the results of Table 6.

Table 6 Hypervolume average obtained by the experiments

PLA
Hypervolume

PLAM DPM PLADPM

AGM = 0.9914 (0.1770) 0.3481 (0.0019) = 0.9586 (0.2098)

MOS 0.3647 (0.0) 1.0876 (0.0172) 0.9518 (0.0552)

MM 0.8392 (0.0522) 1.0939 (0.0148) 1.1849 (0.0075)

ETC 0.4013 (5.76E-5) 1.1795 (0.0041) 1.1394 (0.0102)

By analyzing Table 6 and Figure 14, it is possible to note that the PLAM ex-
periment was better only for AGM, with results that are statistically equivalent to
the PLADPM experiment. In the other cases, the use of the Pattern-Driven Mutation
Operator alone or in combination with the PLA Operators obtained the best (or statis-
tically equivalent) results. It is interesting to note that for AGM, PLADPM obtained
more solutions in PFtrue than PLAM, yet PLAM obtained a greater hypervolume
average. In reality, PLAM obtained a greater “raw” hypervolume average, but it is
statistically equivalent to PLADPM. So, it means that the apparent “inconsistency”
happened by chance, and this could have been the other way around: we could have
observed a greater number of solutions in PFtrue for PLAM and had PLADPM with a
greater hypervolume average, yet these results would probably be statistically equiv-
alent. Furthermore, the “raw” hypervolume difference can be explained by how close
the solutions are scattered in the fronts. Basically, the solutions obtained by PLADPM
that are in PFtrue, even though in greater number, produce less hypervolume contri-
bution by being too close from one another (even though not entirely visible in the
plots).

8.1.3 Euclidean Distance Results

Another indicator that we used is ED. This indicator computes the phenotype distance
between two solutions, i.e., the distance between two solutions in the objective space.
By calculating the distance between the solutions and an ideal one (the best objective
values found for all objectives during the experiment), we can assess how close each
solution is from the ideal one. Table 7 shows the solutions with the best and the worst
ED values found by each experiment. The first and second columns present respec-
tively the PLA and the fitness value of its ideal solution. Columns three and four; five
and six; and seven and eight present respectively the solutions with the lowest ED
(-ED) and greatest ED (+ED) for the experiments PLAM, DPM and PLADPM. Each
cell contains the ED value and the fitness value (FM, CM) of the respective solution.
The best (lowest) values are highlighted in bold for each PLA.
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(a) AGM (b) MOS

(c) MM (d) ETC

Fig. 14 Boxplot graphs for the obtained hypervolume values.

Table 7 Solutions with the lowest and greatest ED values by experiment

PLA Ideal PLAM DPM PLADPM
Solution -ED +ED -ED +ED -ED +ED

AGM (573.0,2.005) 0.058
(641,2.091)

0.509
(573,4.111)

0.766
(853,5.037)

1.19
(1758,5.012)

0.054
(634,2.1)

0.824
(1609,2.006)

MM (152.0,0.006) 0.285
(169,0.1)

0.591
(152,0.2)

0.142
(351,0.043)

1
(221,0.333)

0.093
(302,0.029)

0.869
(2128,0.007)

ETC (705.0,0.007) 0.748
(720,0.02)

0.947
(705,0.026)

0.119
(1188,0.003)

0.815
(6003,0.001)

0.171
(1437,0.004)

0.973
(706,0.026)

MOS (554.0,0.012) 0.779
(567,0.1)

0.779
(567,0.1)

0.204
(703,0.032)

1
(543,0.125)

0.295
(896,0.034)

1
(543,0.125)

The best ED values were obtained by DPM or PLADPM. Therefore, applying
design patterns with PLA Operators or even alone can provide solutions with the best
trade-off between the considered objectives. However, the solutions with the worst
ED were also found by DPM or PLADPM for all PLAs. This points out that not
every solution with design patterns has the best trade-off, and that sometimes a slight
improvement of one objective can significantly worsen the other one.
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8.1.4 Execution Time

Table 8 presents information about execution time. The first column presents the
PLAs and the columns two, three and four present respectively the average time
in milliseconds for each fitness evaluation by the experiments PLAM, DPM and
PLADPM (standard deviation in parentheses). The lowest values are highlighted in
bold.

Table 8 Average execution time per fitness evaluation

PLA
Average in milliseconds

PLAM DPM PLADPM

AGM 16.00 (1.20) 15.21 (2.35) 16.79 (0.86)

MOS 4.10 (0.01) 19.68 (4.95) 7.14 (0.78)

MM 9.18 (2.20) 93.08 (15.97) 41.42 (6.26)

ETC 67.17 (1.06) 1,001.75 (97.78) 247.17 (40.59)

Considering the execution time, we observe that for MM, MOS and ETC, the
PLAM experiment was faster than PLADPM, which in turn was faster than DPM.
For AGM, PLADPM was the slowest. This can be explained by the several PS and
PS-PLA verifications done by the Pattern-Driven Mutation Operator before applying
design patterns, besides verifying if the given design pattern is already applied in the
selected scope. The verifications and pattern application are more expensive than the
mutations done by the PLA Operators. Only for AGM the DPM experiment was
faster. In most cases applying design patterns demanded more time as expected.

8.1.5 Discussion

We observed a tendency for strong optimization of one objective in each experiment.
As seen in Figure 13, the PLAM experiment concentrated the majority of its solu-
tions on the left side of the objective space, minimizing more the FM objective. On
the other hand, the Pattern-Driven Mutation Operator tends to spread its solutions
on the bottom part of the objective space, minimizing more the CM objective. We
expected this correlation, since the PLA Operators focus mainly on the feature mod-
ularization (measured by the FM function), whereas design patterns focus on the co-
hesion and coupling (measured by the CM function). This tendency of PLA Operators
in optimizing FM can be supported by the fact that one of them, the Feature-driven
Mutation Operator [6], was designed specially to modularize features and by the fact
that the experiments of Colanzi et al. [6] also point to a similar conclusion. Further-
more, the tendency of the Pattern-Driven Mutation Operator in optimizing CM can
be explained by the initial motivation of the design patterns and by the purpose for
which they were designed [14]: to decrease coupling and to increase cohesion.
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The fact that the operators are associated with the optimization of a single ob-
jective can also be supported by their functionalities. The PLA Operators rarely re-
move relationships between elements, whereas all operators move methods, attributes
and operations from one class or interface to others, or move classes or interfaces
from one package to another. Usually, each one of these movements creates new rela-
tionships between elements, and in some cases, these relationships are bidirectional,
which increases the coupling between the elements. Moreover, moving elements al-
lows the modularization of these elements and of their features, which affects the FM
objective directly.

The Pattern-Driven Mutation Operator never moves a class, interface, method
or attribute, whereas in almost every design pattern application at least one relation-
ship is removed from the elements. This relationship removal usually comes with an
interface or an abstract class to abstract the communication between classes and inter-
faces, which decreases coupling. On the other hand, the interfaces and classes created
by the operator usually are associated with all concerns/features of the interfaces and
classes that they abstract, which in turn negatively affects the Feature-Driven met-
rics [40]. Adding to the fact that this operator does not move elements, a good feature
modularization may not be achieved. This can be observed in the Pareto fronts of Fig-
ure 13. The majority of solutions obtained by the experiment DPM are concentrated
to the right of the original PLA in the objective space, which indicates that usually the
original PLA has a better feature modularization than the solutions obtained by the
Pattern-Driven Mutation Operator. In some cases, such as for the PLAs MOS and
ETC, the Pattern-Driven Mutation Operator was able to yield solutions with better
FM values compared to the original PLA.

Therefore, when a PLA has tangled features, which is the case of AGM, the usage
of PLA Operators is more efficient. However, when the features of a PLA are well
modularized, which is the case of MOS, then design patterns seem to be the best op-
tion. Nevertheless, the usage of both kind of operators in combination (such as in the
experiment PLADPM) appears to obtain the best trade-off and consequently can be
considered most appropriate. Despite this combination showing the best hypervolume
results only for two of the four PLAs of this study, in most cases this combination
yielded a greater diversity of solutions and never stood too far from the best results
(as seen in Figure 14). In addition, by using all operators the optimization can benefit
from both kinds of functionalities. Furthermore, as we will show further in this sec-
tion, applying both kinds of operators is not much more expensive (execution time)
than applying only MOA4PLA operators.

Another observed point was the correlation between the size of the PLAs and
the population size. For the PLAs MOS and MM (smaller in number of classes and
interfaces), for all experiments, a population size of 50 was enough to obtain the
best hypervolume results. Using a lower population size for small problems is more
favorable, because with a smaller population the number of generations increases
(max fitness evaluation divided by the population size), and increasing the number of
generations the solutions have more time to converge.

For bigger PLAs with more scopes to receive the mutations, it is better to in-
crease the population size. However, only experiments that can perform better for
these problems can benefit from a bigger population. For instance, for ETC the ex-
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periments DPM and PLADPM obtained better hypervolume results than PLAM, thus
a bigger population for them (100 and 200) is favorable, because these experiments
can better explore the search space and generate a greater number of solutions. For
PLAM, a population of 50 is enough for the ETC optimization, since this experi-
ment cannot perform as well as the other two for this PLA. In this case, it is better
to decrease the population size and let the experiment evolve more the few solutions
found. The same occurs for AGM. Because the PLAM and PLADPM experiments
can perform better for AGM, then a population of 200 provides a better exploration
of the search space. Moreover, a population size of 50 is enough for DPM for this
PLA.

When a PLA can be optimized by an experiment, then a greater population size
(without increasing the number of maximum fitness evaluations) can generate better
results, because it allows a better exploration of the search space. When a PLA is less
likely to be optimized by a certain experiment the best choice is to decrease the pop-
ulation size, maintaining the number of maximum evaluations and, as consequence,
increasing the number of generations. The problem here is that the architect gener-
ally does not know if the PLA is highly or less probable to be well optimized by an
experiment. However, if he/she knows the PLA and is aware of the level of feature
modularization, then it is possible to identify which kind of operator is most suitable
for the optimization and consequently he/she can select the most suitable population
size.

8.2 Qualitative Analysis

The next subsections present, respectively, the goals of the qualitative analysis, the
results and discussions, and some final remarks.

8.2.1 Goals

Now for the qualitative analysis, we aim at verifying if the Pattern-Driven Mutation
Operator was able to qualitatively improve the PLA design. Taking into account that
the analysis of all solutions is infeasible, we selected the AGM solution with the low-
est ED (Table 7) found by the experiment DPM. This solution was chosen because
it represents the best trade-off found using only the Pattern-Driven Mutation Opera-
tor. Furthermore, we chose AGM because this PLA is the one with the worst metric
values and the most problematic in terms of design structure.

The main objective of this qualitative analysis is to evaluate the quality of the
solution by comparing it to the original PLA. The idea is to analyze the solution to
asses: i) its quality; ii) if the solution is useful for the architect; iii) if the design pat-
terns were correctly applied in suitable scopes; and iv) if any inconsistency (anomaly)
was observed in the PLA design after the optimization. To this end, we conducted the
qualitative analysis following some specific objectives:

1. Identify which design patterns were applied in the solution;
2. Identify in which scopes these patterns were applied and if they were combined;
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3. Identify how many times each design pattern was applied;
4. Analyze the understandability of the solution;
5. Analyze any violation of design pattern structures;
6. Analyze the effects of the pattern application on the software metrics;
7. Identify potential introduction of anomalies;

We considered these objectives because we acknowledge that an indiscriminate
design pattern application may overload the architecture and degrade its quality. On
the other hand, the correct application of design patterns with structures not very
complex/hard to understand can improve the PLA quality and increase the considered
metrics values. Therefore, with these specific objectives we were able to analyze the
architectures as a whole. The considered anomalies mentioned are the following [29]:

1. Ambiguous Interface: refers to interfaces that are ambiguous, i.e., do not reveal
their exactly purpose and the functionalities they provide;

2. Scattered Functionality: happens when a functionality or concern is scattered
throughout the architecture in several components;

3. Component Responsibility Overload: occurs when a given component/package
has several functionalities and is associated with several concerns;

4. Bloated Interface: refers to interfaces that are overloaded with many operations.

We considered these anomalies because, given the functionality of the Pattern-
Driven Mutation Operator, it is likely that they are introduced into the architectures,
because this operator creates or changes new interfaces, and their concerns can be
interlaced.

8.2.2 Results

Figure 15 depicts a scope of the AGM PLA before the optimization process. Due
to space restrictions, the image depicts only the relevant excerpt of the architecture
diagram. Also, the relationships between packages included and the ones not included
in the figure were omitted.

After the optimization process, the architecture depicted in Figure 16 was ob-
tained. The mutated scope of Figure 16 has an instance of Mediator, two instances of
Bridge and one instance of Strategy. These were the only design pattern applications
identified in the whole architecture, therefore, as we did for Figure 15, only a relevant
excerpt of the diagram is illustrated.

The first impression when looking to both figures is that the architecture became
overloaded. The original AGM design has 46 classes and interfaces and the mutated
one has 55, which is an increase of approximately 19% in this kind of elements.
This was expected, since the application of design patterns in this work never deletes
classes and interfaces. However, this solution had its CM value decreased when com-
pared to the original one (as seen in Figure 13.a). This objective function, among
other things, measures the number of elements in the architecture, hence the cohe-
sion and coupling gained surpassed the addition of these 9 new classes, interfaces
and their new methods.
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Fig. 15 AGM before the optimization process

This increase in the number of elements resulted in a hard understanding of the
new structure. In fact, this hard understanding was the major drawback resulting from
the pattern application. However, if each design pattern is analyzed separately con-
sidering their purposes and applicabilities, it is possible to understand what is the
meaning of this scope. The Strategy instance has a Strategy interface “GUIStrategy”
to abstract all elements with the “GUI” suffix, i.e., elements that control the graphic
interface. The Mediator instance was created to mediate the communication between
elements associated with the play concern through the “PlayMediator” interface and
“PlayMediatorImpl” class. Finally, the Bridge instances with the abstraction classes
“DettachMediatorAbstraction” and “InitializeAbstraction” were created to abstract,
respectively, how Mediator objects are attached and detached from colleagues, and
how elements are initialized. At the end of the evolutionary process, all elements from
the scope were considered colleagues of the Mediator instance. Despite the original
structure having only one relationship, the application of each design pattern in this
scope generated new relationships between the elements, which explains the applica-
tion of Mediator. Evaluating other scenarios and other possibilities of output, maybe
only the application of Mediator would be enough to improve the quality of the ar-
chitecture. Nevertheless, the combination of such patterns were coherent with their
functionalities and we considered as “successful” the application of Mediator within
our approach.

To overcome the limitation related to the hard understanding, we can use restric-
tions for combining design patterns in order to increase the understandability of their
combination. In other words, we can design the application methods to consider the
existence of other design patterns in the scopes and apply procedures for specific
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Fig. 16 AGM after the optimization process
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patterns combination. These restrictions are not treated in this work, but can be con-
sidered in the future.

With the presented result, the original architecture was improved considering the
PLA extensibility and coupling metrics. The PLA extensibility improvement is due to
the easier inclusion and removal of elements in the scope, since the architect now only
needs to identify the purpose of the new element and to include it in the instance of
the design pattern that adequately abstracts it. The coupling was decreased because
all interactions are now managed by the Mediator pattern and the play concern is
realized through this pattern.

Another observed peculiarity of the scope was that all elements that took part
in the mutations are all exclusively associated with the play concern. Therefore, the
anomaly Component Responsibility Overload was not introduced in this solution,
because, besides staying in their original packages, only elements that are associ-
ated with a single concern were mutated. In addition, the created and changed ele-
ments do not present the Bloated Interface and Scattered Functionality anomalies,
since they have at maximum four methods, the elements were created in the same
packages/components of the existing elements and the name of the new elements are
straight forward and reflect their purposes: “PlayColleague”, “DettachMediator” and
“InitializationAbstraction”.

Furthermore, in Figure 16 an instance of Strategy was applied for elements with
the “GUI” suffix. Other possible suffixes are “Mgr”, “Mgt” and “Ctrl”. These suf-
fixes identify the layers [16] in which the elements are located in the architecture.
Elements with a same suffix or prefix are present in a same layer, however they are
not necessarily part of a same algorithm family, which can generate pattern appli-
cations in scopes that were verified as suitable, when actually they are not. In the
example it is justified because the intention is to abstract the elements that manage
the graphic interface.

In the original design, the PLA AGM has an interface named “IGameBoardMgt”
that declares 13 operations and can be considered an example of Bloated Interface.
However, this interface was not modified by the proposed operator and the anomaly
was not corrected. Even though the play concern had been abstracted by the pattern
application, this concern stood scattered throughout the architecture as it was in the
original design, thus the Scattered Functionality anomaly was not corrected. In the
original PLA there is a package named “GameBoardCtrl” that has elements associ-
ated with 8 different concerns and can be considered an example of Component Re-
sponsibility Overload. This anomaly was also not corrected by the operator. Although
these anomalies have not been corrected, new anomalies were not introduced in the
architecture by the Pattern-Driven Mutation Operator, which points to a capability
of the operator in optimizing architectures without degrading its quality. It is possible
that the PLADPM experiment corrected such anomalies because the Feature-driven
Operator of MOA4PLA is able to improve feature modularization, which impacts
directly on the referred anomalies.

In the solution, all elements that received the mutation are associated with the
play concern. Moreover, the Mediator pattern was applied just to intermediate the
communication of elements associated with this concern. This indicates a potential
design problem in the modularization of the play concern in the original PLA. This
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problem was not corrected by the operator, but was identified by it, since this feature
received several design pattern applications.

8.2.3 Final Remarks

Summarizing the results, we can note that no quality decrement was observed by the
application of a specific pattern or by the application of a pattern in a specific scope,
but rather when a design pattern encompassed several elements or when several de-
sign patterns were applied in a single scope. Nevertheless, this quality degradation is
focused on the understandability of the architecture, and when a design pattern was
applied in a small scope the obtained architecture quality was good.

We did not observe the application of design patterns in PS-PLAs in the evaluated
solution, only in PSs. A factor that prevented this to happen may be the way in which
the variation points and variants are modeled in the diagrams by the architect, which
is not compliant with the PS-PLA requirements defined. Moreover, the relationships
are often modeled as associations, aggregations and compositions, and not as usage
or dependency, which are required by the verification methods. However, other quali-
tative analysis, PLAs designed by other architects and a deeper study of the solutions
can lead to identification of mutated PS-PLAs.

The design pattern application of this work does not concern with the consistency
of architectural styles in the PLA, which in some cases can be violated. This problem
had been already identified by Colanzi et al. [6] in their study, but only using their op-
erators. Mariani et al. [31, 32] proposed mutation operators aiming at preserving the
architectural styles of PLAs being optimized by search-based approaches. Some re-
strictions or other operators can be similarly proposed to preserve architectural styles
when applying design patterns. However, it can be complex to do this, since the muta-
tions performed by the Pattern-Driven Mutation Operator usually encompass several
elements, but they are necessary to ensure the organization and quality of the archi-
tecture.

It is difficult to determine if the flexibility provided by the application of a design
pattern is really needed. Furthermore, the application of each design pattern or their
combination can present other characteristics, such as a high complexity. The choice
of which architecture is the best and which design pattern is the best depends on the
needs and preferences of the architect. The pattern application allows MOA4PLA to
obtain a greater diversity of solutions with good metric values, however the architect
needs to decide which solution (architecture) will be used as PLA for the SPL.

8.3 Answering the Research Question

Lastly, taking into account the quantitative and qualitative results presented in this
section, we can positively answer the research question considered for this study:
automatically applying design patterns using the Pattern-Driven Mutation Operator
contributes to the improvement of the PLA design being optimized. Moreover, we
observed that the proposed operator provided a greater diversity of solutions for the
architect to make his/her decisions.
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9 Related Work

The application of design patterns in PLAs is not a completely established research
field. Works on this subject usually offers manual or semi-automatic approaches in
specific domains [27, 45]. Keepence and Mannion [27] proposed a method to use
design patterns to model variabilities in class diagrams. They defined three patterns
that aim at modeling specific variant types: i) Single Adapter – for mutually exclusive
variants; ii) Multiple Adapter – for mutually inclusive variants; and iii) Optional – for
optional variants. These patterns have some characteristics that cannot be identified
in suitable scopes of class diagrams that prevent their automatic application by a
search-based approach, such as MOA4PLA.

Fant et al. [13] presented a pattern based modeling approach for SPL. This ap-
proach uses architectural patterns to specify variabilities at a higher level of granular-
ity. The authors stated that their approach is useful when the variabilities are not all
known during the domain engineering (development of the PLA), which decreases
the design effort during that phase. This approach was validated on a space flight
software, and domain specific patterns were created. Although the functional correct-
ness of the evaluated architecture was ensured, the approach is still manual and is
focused more on the variability modeling problem, rather than on the optimization of
the architectures.

Ziadi et al. [45] proposed an approach based on the Abstract Factory pattern [14]
structure to model and derive PLAs. Their approach includes the usage specifica-
tion and an OCL (Object Constraint Language) algorithm for the model derivation.
However, we did not use their approach in this work because it has some specific
characteristics (such as structure and relationship rules between variants and varia-
tion points) that cannot be automatically identified in scopes of a class diagram.

We have not found in the literature works that automatically apply design pat-
terns in search-based design of PLAs. The works most related to ours apply design
patterns for search-based design of architectures in general, as described in the survey
of search-based software design written by Räihä [36]. We give a brief overview of
such works in the next paragraphs, but for a more detailed overview, we recommend
the mentioned survey.

According to the systematic review of Mariani and Vergilio [30], some search-
based algorithms have been used in order to find sequences of design patterns ap-
plications to improve the quality of software architectures [1, 22, 25, 35, 41]. Such
works optimize the architectural design indirectly or only use semi-automatic refac-
toring. We present next the works most related to ours in terms of design pattern
application in conventional architectures.

Räihä et al. [38] used genetic algorithms to apply design patterns in the synthesis
of software architectures. The authors used five design patterns: Adapter, Strategy,
Mediator, Template Method and Facade. However, they adopted a different problem
representation from ours, which needs extension to represent PLAs. Besides, they did
not perform an identification of suitable scopes before applying design patterns.

Cinnéide and Nixon [3] proposed a semi-automatic refactoring approach for ap-
plying design patterns in source code. They created minipatterns, small transforma-
tions that when put together can successfully apply design patterns in the source code.
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A limitation of this approach is that it is not completely automated. The architect must
select which design pattern should be applied and where the refactoring must occur.

10 Concluding Remarks

This work investigates a way to allow the application of design patterns in the search-
based optimization approach MOA4PLA. However, some challenges had to be over-
come before automatically applying design patterns in software architectures. First,
we conducted a feasibility analysis to determine which GoF patterns could be applied
in the MOA4PLA context, in order to avoid an indiscriminate application and intro-
duction of anomalies. In the feasibility analysis we found four design patterns to be
feasible: Strategy, Bridge, Facade and Mediator.

To represent suitable scopes to the application of the feasible patterns we intro-
duced PS and PS-PLA concepts, which are metamodels to represent architectural
elements that compose the adequate scope to receive each pattern.

Using the PS and PS-PLA concepts, we proposed and implemented a mutation
operator named Pattern-Driven Mutation Operator that automatically applies differ-
ent patterns. This operator uses some verification methods to check if a scope can
receive the application of a given design pattern. The pattern application is done by
the application methods that add, remove or change elements from the scope.

Our empirical evaluation used four PLAs and compared the Pattern-Driven Mu-
tation Operator results with the PLA Operators, which are conventional operators of
MOA4PLA [6]. Our analysis considered the Pareto dominance concepts and the hy-
pervolume indicator. This evaluation showed the capability of the proposed mutation
operator to finding good solutions and with a favorable population diversity in all
problems. However, despite some authors [38] claim that a concurrent optimization
using design patterns and conventional operators (such as the PLA Operators used by
MOA4PLA) is too complex for the software design, in this work the results showed
that the usage of both kinds of operators (PLA Operators and Pattern-Driven Opera-
tor) is a more reasonable option in most cases, since it presents a less unpredictable
behavior and fronts with solutions, if not better than the ones obtained using only
the Pattern-Driven Operator, at least close to the best solutions. Using only Pattern-
Driven Operator showed some quantitative advantages, but for a PLA such as AGM,
it was not such an advantageous option.

In addition to this, we also qualitatively evaluated the generated architectures
in order to assess their utility. Design patterns were successfully applied in suitable
scopes and the most important improvements obtained are related to cohesion and
coupling metrics. Therefore, the design pattern application is quantitatively and qual-
itatively beneficial for the PLA design in the context of this work.

It is difficult to determine if the flexibility provided by the design patterns is really
necessary, hence, despite the good results obtained, the participation and experience
of the architect is crucial to decide which is the best solution. The main advantage of
this work is to reduce the architect’s effort providing different good PLA alternatives.

As future work we intend to extend this approach to other design patterns and
other UML diagrams, such as the interaction ones. Other possibility is the creation
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of minipatterns such as in [3] to allow a better reusability of transformations. Fur-
thermore, other researches may use an interactive approach to help the architect in
guiding the evolution towards his/her goals, and consequently improving the quality
of the designs. We intend to create restrictions to allow the combination of design
patterns, and thus decreasing chances of violations in the design patterns structures.

New experiments with bigger PLAs can yield different results and should be con-
ducted. We intend to formulate other objective functions with different software met-
rics in order to increase the accuracy of the results, and to conduct other qualitative
analyses with researchers/architects to provide a better evaluation of the solutions.
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