11 research outputs found

    The GenoChip: A New Tool for Genetic Anthropology

    Get PDF
    The Genographic Project is an international effort aimed at charting human migratory history. The project is nonprofit and nonmedical, and, through its Legacy Fund, supports locally led efforts to preserve indigenous and traditional cultures. Although the first phase of the project was focused on uniparentally inherited markers on the Y-chromosome and mitochondrial DNA (mtDNA), the current phase focuses on markers from across the entire genome to obtain a more complete understanding of human genetic variation. Although many commercial arrays exist for genome-wide single-nucleotide polymorphism (SNP) genotyping, they were designed for medical genetic studies and contain medically related markers that are inappropriate for global population genetic studies. GenoChip, the Genographic Project’s new genotyping array, was designed to resolve these issues and enable higher resolution research into outstanding questions in genetic anthropology. TheGenoChip includes ancestry informativemarkers obtained for over 450 human populations, an ancient human (Saqqaq), and two archaic hominins (Neanderthal and Denisovan) and was designed to identify all knownY-chromosome andmtDNAhaplogroups. The chip was carefully vetted to avoid inclusion ofmedically relevant markers. To demonstrate its capabilities, we compared the FST distributions of GenoChip SNPs to those of two commercial arrays. Although all arrays yielded similarly shaped (inverse J) FST distributions, the GenoChip autosomal and X-chromosomal distributions had the highestmean FST, attesting to its ability to discern subpopulations. The chip performances are illustrated in a principal component analysis for 14 worldwide populations. In summary, the GenoChip is a dedicated genotyping platform for genetic anthropology. With an unprecedented number of approximately 12,000 Y-chromosomal and approximately 3,300 mtDNA SNPs and over 130,000 autosomal and X-chromosomal SNPswithout any known health,medical, or phenotypic relevance, the GenoChip is a useful tool for genetic anthropology and population genetics

    Parasite spread at the domestic animal - wildlife interface: anthropogenic habitat use, phylogeny and body mass drive risk of cat and dog flea (Ctenocephalides spp.) infestation in wild mammals

    Get PDF
    Spillover of parasites at the domestic animal - wildlife interface is a pervasive threat to animal health. Cat and dog fleas (Ctenocephalides felis and C. canis) are among the world's most invasive and economically important ectoparasites. Although both species are presumed to infest a diversity of host species across the globe, knowledge on their distributions in wildlife is poor. We built a global dataset of wild mammal host associations for cat and dog fleas, and used Bayesian hierarchical models to identify traits that predict wildlife infestation probability. We complemented this by calculating functional-phylogenetic host specificity to assess whether fleas are restricted to hosts with similar evolutionary histories, diet or habitat niches.Over 130 wildlife species have been found to harbour cat fleas, representing nearly 20% of all mammal species sampled for fleas. Phylogenetic models indicate cat fleas are capable of infesting a broad diversity of wild mammal species through ecological fitting. Those that use anthropogenic habitats are at highest risk. Dog fleas, by contrast, have been recorded in 31 mammal species that are primarily restricted to certain phylogenetic clades, including canids, felids and murids. Both flea species are commonly reported infesting mammals that are feral (free-roaming cats and dogs) or introduced (red foxes, black rats and brown rats), suggesting the breakdown of barriers between wildlife and invasive reservoir species will increase spillover at the domestic animal - wildlife interface.Our empirical evidence shows that cat fleas are incredibly host-generalist, likely exhibiting a host range that is among the broadest of all ectoparasites. Reducing wild species' contact rates with domestic animals across natural and anthropogenic habitats, together with mitigating impacts of invasive reservoir hosts, will be crucial for reducing invasive flea infestations in wild mammals

    A genomic history of Aboriginal Australia

    No full text
    The population history of Aboriginal Australians remains largely uncharacterised, not least because of a lack of extensive genomic data. We generated high-coverage genomes for 83 geographically diverse Aboriginal Australians (all speakers of Pama-Nyungan languages) and 25 Papuans from the New Guinea Highlands. We find that Papuan and Aboriginal Australian ancestors diversified from each other 25-40 thousand years ago (kya), suggesting early population structure in the ancient continent of Sahul (Australia, New Guinea and Tasmania). However, all contemporary Aboriginal Australians studied descend from a single founding population that differentiated around 10-32 kya. We infer a population expansion in northeast Australia during the Holocene (past c.10 kya) associated with limited gene flow from this region to the rest of Australia. This is broadly consistent with the spread of the Pama-Nyungan languages and cultural changes taking place across the continent in the mid-Holocene. We estimate that Aboriginal Australians and Papuans diverged from Eurasians 60-100 kya, following a single out of Africa dispersal and subsequent admixture with different archaic populations. Finally, we report evidence of selection in Aboriginal Australians potentially associated with living in the desert

    Cocoteros en las Américas

    No full text
    It has been clearly established that the Portuguese introduced coconuts to the Cape Verde islands in 1499, and these supplied the Atlantic coasts and the Caribbean in the 1500s. By contrast, early 16th century reports of coconuts on the Pacific coast of Panama are controversial. Recent DNA analysis of modern coconut populations there shows them to be similar to Philippine varieties, agreeing with morphometric analysis. Hence, coconuts must have been brought by boat from the western Pacific, but no archaeological, ethnobotanical or linguistic evidence for pre-Columbian coconuts has been found. Thus, the most parsimonious explanation is that coconuts were introduced to Panama after Spanish conquest, as supported by DNA analysis and historical records of Spanish voyages. New collections along the Pacific coast, from Mexico to Colombia, are increasing the sampling for genetic analysis, and further work in the Philippines is suggested to test probable origins. Unless new archaeological discoveries prove otherwise, the strong hypothesis of Philippine origin should direct future research on the sources of American Pacific coast coconuts. © 2013 The New York Botanical Garden

    Ancient DNA of Phoenician remains indicates discontinuity in the settlement history of Ibiza

    No full text
    Ibiza was permanently settled around the 7th century BCE by founders arriving from west Phoenicia. The founding population grew significantly and reached its height during the 4th century BCE. We obtained nine complete mitochondrial genomes from skeletal remains from two Punic necropoli in Ibiza and a Bronze Age site from Formentara. We also obtained low coverage (0.47X average depth) of the genome of one individual, directly dated to 361-178 cal BCE, from the Cas Molí site on Ibiza. We analysed and compared ancient DNA results with 18 new mitochondrial genomes from modern Ibizans to determine the ancestry of the founders of Ibiza. The mitochondrial results indicate a predominantly recent European maternal ancestry for the current Ibizan population while the whole genome data suggest a significant Eastern Mediterranean component. Our mitochondrial results suggest a genetic discontinuity between the early Phoenician settlers and the island's modern inhabitants. Our data, while limited, suggest that the Eastern or North African influence in the Punic population of Ibiza was primarily male dominated
    corecore