49 research outputs found

    Social Status Affects the Degree of Sex Difference in the Songbird Brain

    Get PDF
    It is thought that neural sex differences are functionally related to sex differences in the behaviour of vertebrates. A prominent example is the song control system of songbirds. Inter-specific comparisons have led to the hypothesis that sex differences in song nuclei size correlate with sex differences in song behaviour. However, only few species with similar song behaviour in both sexes have been investigated and not all data fit the hypothesis. We investigated the proposed structure – function relationship in a cooperatively breeding and duetting songbird, the white-browed sparrow weaver (Plocepasser mahali). This species lives in groups of 2–10 individuals, with a dominant breeding pair and male and female subordinates. While all male and female group members sing duet and chorus song, a male, once it has reached the dominant position in the group, sings an additional type of song that comprises a distinct and large syllable repertoire. Here we show for both types of male – female comparisons a male-biased sex difference in neuroanatomy of areas of the song production pathway (HVC and RA) that does not correlate with the observed polymorphism in song behaviour. In contrast, in situ hybridisation of mRNA of selected genes expressed in the song nucleus HVC reveals a gene expression pattern that is either similar between sexes in female – subordinate male comparisons or female-biased in female – dominant male comparisons. Thus, the polymorphic gene expression pattern would fit the sex- and status-related song behaviour. However, this implies that once a male has become dominant it produces the duetting song with a different neural phenotype than subordinate males

    Learned vocal variation is associated with abrupt cryptic genetic change in a parrot species complex

    Get PDF
    <div><p>Contact zones between subspecies or closely related species offer valuable insights into speciation processes. A typical feature of such zones is the presence of clinal variation in multiple traits. The nature of these traits and the concordance among clines are expected to influence whether and how quickly speciation will proceed. Learned signals, such as vocalizations in species having vocal learning (e.g. humans, many birds, bats and cetaceans), can exhibit rapid change and may accelerate reproductive isolation between populations. Therefore, particularly strong concordance among clines in learned signals and population genetic structure may be expected, even among continuous populations in the early stages of speciation. However, empirical evidence for this pattern is often limited because differences in vocalisations between populations are driven by habitat differences or have evolved in allopatry. We tested for this pattern in a unique system where we may be able to separate effects of habitat and evolutionary history. We studied geographic variation in the vocalizations of the crimson rosella (<em>Platycercus elegans</em>) parrot species complex. Parrots are well known for their life-long vocal learning and cognitive abilities. We analysed contact calls across a <em>ca</em> 1300 km transect encompassing populations that differed in neutral genetic markers and plumage colour. We found steep clinal changes in two acoustic variables (fundamental frequency and peak frequency position). The positions of the two clines in vocal traits were concordant with a steep cline in microsatellite-based genetic variation, but were discordant with the steep clines in mtDNA, plumage and habitat. Our study provides new evidence that vocal variation, in a species with vocal learning, can coincide with areas of restricted gene flow across geographically continuous populations. Our results suggest that traits that evolve culturally can be strongly associated with reduced gene flow between populations, and therefore may promote speciation, even in the absence of other barriers.</p> </div

    Female house sparrows "count on" male genes: experimental evidence for MHC-dependent mate preference in birds

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Females can potentially assess the quality of potential mates using their secondary sexual traits, and obtain "good genes" that increase offspring fitness. Another potential indirect benefit from mating preferences is genetic compatibility, which does not require extravagant or viability indicator traits. Several studies with mammals and fish indicate that the genes of the major histocompatibility complex (MHC) influence olfactory cues and mating preferences, and such preferences confer genetic benefits to offspring. We investigated whether individual MHC diversity (class I) influences mating preferences in house sparrows (<it>Passer domesticus</it>).</p> <p>Results</p> <p>Overall, we found no evidence that females preferred males with high individual MHC diversity. Yet, when we considered individual MHC allelic diversity of the females, we found that females with a low number of alleles were most attracted to males carrying a high number of MHC alleles, which might reflect a mating-up preference by allele counting.</p> <p>Conclusions</p> <p>This is the first experimental evidence for MHC-dependent mating preferences in an avian species to our knowledge. Our findings raise questions about the underlying mechanisms through which birds discriminate individual MHC diversity among conspecifics, and they suggest a novel mechanism through which mating preferences might promote the evolution of MHC polymorphisms and generate positive selection for duplicated MHC loci.</p

    Vocal Communications and the Maintenance of Population Specific Songs in a Contact Zone

    Get PDF
    Bird song has been hypothesized to play a role in several important aspects of the biology of songbirds, including the generation of taxonomic diversity by speciation; however, the role that song plays in speciation within this group may be dependent upon the ability of populations to maintain population specific songs or calls in the face of gene flow and external cultural influences. Here, in an exploratory study, we construct a spatially explicit model of population movement to examine the consequences of secondary contact of populations singing distinct songs. We concentrate on two broad questions: 1) will population specific songs be maintained in a contact zone or will they be replaced by shared song, and 2) what spatial patterns in the distribution of songs may result from contact? We examine the effects of multiple factors including song-based mating preferences and movement probabilities, oblique versus paternal learning of song, and both cultural and genetic mutations. We find a variety of conditions under which population specific songs can be maintained, particularly when females have preferences for their population specific songs, and we document many distinct patterns of song distribution within the contact zone, including clines, banding, and mosaics

    Melanism in Peromyscus Is Caused by Independent Mutations in Agouti

    Get PDF
    Identifying the molecular basis of phenotypes that have evolved independently can provide insight into the ways genetic and developmental constraints influence the maintenance of phenotypic diversity. Melanic (darkly pigmented) phenotypes in mammals provide a potent system in which to study the genetic basis of naturally occurring mutant phenotypes because melanism occurs in many mammals, and the mammalian pigmentation pathway is well understood. Spontaneous alleles of a few key pigmentation loci are known to cause melanism in domestic or laboratory populations of mammals, but in natural populations, mutations at one gene, the melanocortin-1 receptor (Mc1r), have been implicated in the vast majority of cases, possibly due to its minimal pleiotropic effects. To investigate whether mutations in this or other genes cause melanism in the wild, we investigated the genetic basis of melanism in the rodent genus Peromyscus, in which melanic mice have been reported in several populations. We focused on two genes known to cause melanism in other taxa, Mc1r and its antagonist, the agouti signaling protein (Agouti). While variation in the Mc1r coding region does not correlate with melanism in any population, in a New Hampshire population, we find that a 125-kb deletion, which includes the upstream regulatory region and exons 1 and 2 of Agouti, results in a loss of Agouti expression and is perfectly associated with melanic color. In a second population from Alaska, we find that a premature stop codon in exon 3 of Agouti is associated with a similar melanic phenotype. These results show that melanism has evolved independently in these populations through mutations in the same gene, and suggest that melanism produced by mutations in genes other than Mc1r may be more common than previously thought

    Does Genetic Diversity Predict Health in Humans?

    Get PDF
    Genetic diversity, especially at genes important for immune functioning within the Major Histocompatibility Complex (MHC), has been associated with fitness-related traits, including disease resistance, in many species. Recently, genetic diversity has been associated with mate preferences in humans. Here we asked whether these preferences are adaptive in terms of obtaining healthier mates. We investigated whether genetic diversity (heterozygosity and standardized mean d2) at MHC and nonMHC microsatellite loci, predicted health in 153 individuals. Individuals with greater allelic diversity (d2) at nonMHC loci and at one MHC locus, linked to HLA-DRB1, reported fewer symptoms over a four-month period than individuals with lower d2. In contrast, there were no associations between MHC or nonMHC heterozygosity and health. NonMHC-d2 has previously been found to predict male preferences for female faces. Thus, the current findings suggest that nonMHC diversity may play a role in both natural and sexual selection acting on human populations

    ZENK activation in the nidopallium of black-capped chickadees in response to both conspecific and heterospecific calls

    Get PDF
    Neuronal populations in the songbird nidopallium increase in activity the most to conspecific vocalizations relative to heterospecific songbird vocalizations or artificial stimuli such as tones. Here, we tested whether the difference in neural activity between conspecific and heterospecific vocalizations is due to acoustic differences or to the degree of phylogenetic relatedness of the species producing the vocalizations. To compare differences in neural responses of black-capped chickadees, Poecile atricapillus, to playback conditions we used a known marker for neural activity, ZENK, in the caudal medial nidopallium and caudomedial mesopallium. We used the acoustically complex ‘dee’ notes from chick-a-dee calls, and vocalizations from other heterospecific species similar in duration and spectral features. We tested the vocalizations from three heterospecific species (chestnut-backed chickadees, tufted titmice, and zebra finches), the vocalizations from conspecific individuals (black-capped chickadees), and reversed versions of the latter. There were no significant differences in the amount of expression between any of the groups except in the control condition, which resulted in significantly less neuronal activation. Our results suggest that, in certain cases, neuronal activity is not higher in response to conspecific than in response to heterospecific vocalizations for songbirds, but rather is sensitive to the acoustic features of the signal. Both acoustic features of the calls and the phylogenetic relationship between of the signaler and the receiver interact in the response of the nidopallium.Publisher PDFPeer reviewe
    corecore