13 research outputs found

    Genomic release-recapture experiment in the wild reveals within-generation polygenic selection in stickleback fish

    Get PDF
    How rapidly natural selection sorts genome-wide standing genetic variation during adaptation remains largely unstudied experimentally. Here, we present a genomic release-recapture experiment using paired threespine stickleback fish populations adapted to selectively different lake and stream habitats. First, we use pooled whole-genome sequence data from the original populations to identify hundreds of candidate genome regions likely under divergent selection between these habitats. Next, we generate F2 hybrids from the same lake-stream population pair in the laboratory and release thousands of juveniles into a natural stream habitat. Comparing the individuals surviving one year of stream selection to a reference sample of F2 hybrids allows us to detect frequency shifts across the candidate regions toward the genetic variants typical of the stream population—an experimental outcome consistent with polygenic directional selection. Our study reveals that adaptation in nature can be detected as a genome-wide signal over just a single generation

    Experimental evidence for rapid genomic adaptation to a new niche in an adaptive radiation

    No full text
    A substantial part of biodiversity is thought to have arisen from adaptive radiations in which one lineage rapidly diversified into multiple lineages specialized to many different niches. However, selection and drift reduce genetic variation during adaptation to new niches and may thus prevent or slow down further niche shifts. We tested whether rapid adaptation is still possible from a highly derived ecotype in the adaptive radiation of threespine stickleback on the Haida Gwaii archipelago, Western Canada. In a 19-year selection experiment, we let giant sticklebacks from a large blackwater lake evolve in a small clearwater pond without vertebrate predators. A total of 56 whole genomes from the experiment and 26 natural populations revealed that adaptive genomic change was rapid in many small genomic regions and encompassed 75% of the change between 12,000-year-old ecotypes. Genomic change was as fast as phenotypic change in defence and trophic morphology, and both were largely parallel between the short-term selection experiment and long-term natural adaptive radiation. Our results show that functionally relevant standing genetic variation can persist in derived radiation members, allowing adaptive radiations to unfold very rapidly
    corecore