168 research outputs found

    Effect of display resolution on time to diagnosis with virtual pathology slides in a systematic search task

    Get PDF
    Performing diagnoses using virtual slides can take pathologists significantly longer than with glass slides, presenting a significant barrier to the use of virtual slides in routine practice. Given the benefits in pathology workflow efficiency and safety that virtual slides promise, it is important to understand reasons for this difference and identify opportunities for improvement. The effect of display resolution on time to diagnosis with virtual slides has not previously been explored. The aim of this study was to assess the effect of display resolution on time to diagnosis with virtual slides. Nine pathologists participated in a counterbalanced crossover study, viewing axillary lymph node slides on a microscope, a 23-in 2.3-megapixel single-screen display and a three-screen 11-megapixel display consisting of three 27-in displays. Time to diagnosis and time to first target were faster on the microscope than on the single and three-screen displays. There was no significant difference between the microscope and the three-screen display in time to first target, while the time taken on the single-screen display was significantly higher than that on the microscope. The results suggest that a digital pathology workstation with an increased number of pixels may make it easier to identify where cancer is located in the initial slide overview, enabling quick location of diagnostically relevant regions of interest. However, when a comprehensive, detailed search of a slide has to be made, increased resolution may not offer any additional benefit

    Paediatric radiology seen from Africa. Part I: providing diagnostic imaging to a young population

    Get PDF
    Article approval pendingPaediatric radiology requires dedicated equipment, specific precautions related to ionising radiation, and specialist knowledge. Developing countries face difficulties in providing adequate imaging services for children. In many African countries, children represent an increasing proportion of the population, and additional challenges follow from extreme living conditions, poverty, lack of parental care, and exposure to tuberculosis, HIV, pneumonia, diarrhoea and violent trauma. Imaging plays a critical role in the treatment of these children, but is expensive and difficult to provide. The World Health Organisation initiatives, of which the World Health Imaging System for Radiography (WHIS-RAD) unit is one result, needs to expand into other areas such as the provision of maintenance servicing. New initiatives by groups such as Rotary and the World Health Imaging Alliance to install WHIS-RAD units in developing countries and provide digital solutions, need support. Paediatric radiologists are needed to offer their services for reporting, consultation and quality assurance for free by way of teleradiology. Societies for paediatric radiology are needed to focus on providing a volunteer teleradiology reporting group, information on child safety for basic imaging, guidelines for investigations specific to the disease spectrum, and solutions for optimising imaging in children

    The workload of web-based consultations with atopic eczema patients at home

    Get PDF
    Abstract Background Atopic eczema is a chronic inflammatory non-contagious skin disease characterised by intensive itch and inflamed skin. Due to its chronic and relapsing course atopic eczema imposes a great burden on affected families. Review articles about home care telemedicine have indicated advantageous effects of home telehealth. However, few studies have investigated how home care telemedicine applications affect the workload of the clinician. Methods The use of a web-based counselling system was recorded through computerised logging. The doctor who answered the requests sent via the Internet recorded the amount of time needed for reading and answering 93 consecutive requests. Results The time needed by the physician to read and answer a request was less than 5 minutes in 60% of the cases. The doctor spent significantly more time to answer requests that had photographs attached compared to requests without photographs (P = 0.005). The time needed to answer requests received during the winter season (October-March) was significantly longer than the rest of the year (P = 0.023). There was no correlation between the answering time and the age of the patient. Conclusions Individual web-based follow-up of atopic eczema patients at home is feasible. The amount of time needed for the doctor to respond to a request from the patient appears to be small. The answering time seems to depend on whether photographs are supplied and also on seasonal variations of disease activity. Since the management of atopic eczema is complex involving many different types of treatments and educational aspects, we expect this type of communication to be useful also to other chronic disease patients requiring close follow-up.</p

    Digital LED Pixels: Instructions for use and a characterization of their properties

    Get PDF
    This article details how to control light emitting diodes (LEDs) using an ordinary desktop computer. By combining digitally addressable LEDs with an off-the-shelf microcontroller (Arduino), multiple LEDs can be controlled independently and with a high degree of temporal, chromatic, and luminance precision. The proposed solution is safe (can be powered by a 5-V battery), tested (has been used in published research), inexpensive (∼ 60+60 + 2 per LED), highly interoperable (can be controlled by any type of computer/operating system via a USB or Bluetooth connection), requires no prior knowledge of electrical engineering (components simply require plugging together), and uses widely available components for which established help forums already exist. Matlab code is provided, including a ‘minimal working example’ of use suitable for use by beginners. Properties of the recommended LEDs are also characterized, including their response time, luminance profile, and color gamut. Based on these, it is shown that the LEDs are highly stable in terms of both luminance and chromaticity, and do not suffer from issues of warm-up, chromatic shift, and slow response times associated with traditional CRT and LCD monitor technology

    What Was I Thinking? Eye-Tracking Experiments Underscore the Bias that Architecture Exerts on Nuclear Grading in Prostate Cancer

    Get PDF
    We previously reported that nuclear grade assignment of prostate carcinomas is subject to a cognitive bias induced by the tumor architecture. Here, we asked whether this bias is mediated by the non-conscious selection of nuclei that “match the expectation” induced by the inadvertent glance at the tumor architecture. 20 pathologists were asked to grade nuclei in high power fields of 20 prostate carcinomas displayed on a computer screen. Unknown to the pathologists, each carcinoma was shown twice, once before a background of a low grade, tubule-rich carcinoma and once before the background of a high grade, solid carcinoma. Eye tracking allowed to identify which nuclei the pathologists fixated during the 8 second projection period. For all 20 pathologists, nuclear grade assignment was significantly biased by tumor architecture. Pathologists tended to fixate on bigger, darker, and more irregular nuclei when those were projected before kigh grade, solid carcinomas than before low grade, tubule-rich carcinomas (and vice versa). However, the morphometric differences of the selected nuclei accounted for only 11% of the architecture-induced bias, suggesting that it can only to a small part be explained by the unconscious fixation on nuclei that “match the expectation”. In conclusion, selection of « matching nuclei » represents an unconscious effort to vindicate the gravitation of nuclear grades towards the tumor architecture
    corecore