1,238 research outputs found

    Relative Importance of Convective Uncertainties in Massive Stars

    Get PDF
    In this work, we investigate the impact of uncertainties due to convective boundary mixing (CBM), commonly called ‘overshoot’, namely the boundary location and the amount of mixing at the convective boundary, on stellar structure and evolution. For this we calculated two grids of stellar evolution models with the MESA code, each with the Ledoux and the Schwarzschild boundary criterion, and vary the amount of CBM. We calculate each grid with the initial masses 15, 20 and 25 Mþdot25\, \rm M_þdot. We present the stellar structure of the models during the hydrogen and helium burning phases. In the latter, we examine the impact on the nucleosynthesis. We find a broadening of the main-sequence with more CBM, which is more in agreement with observations. Furthermore during the core hydrogen burning phase there is a convergence of the convective boundary location due to CBM. The uncertainties of the intermediate convective zone remove this convergence. The behaviour of this convective zone strongly affects the surface evolution of the model, i.e. how fast it evolves red-wards. The amount of CBM impacts the size of the convective cores and the nucleosynthesis, e.g. the 12C to 16O ratio and the weak s-process. Lastly, we determine the uncertainty that the range of parameter values investigated introduce and we find differences of up to 7070% for the core masses and the total mass of the star

    The impact of obesity on time spent with the provider and number of medications managed during office-based physician visits using a cross-sectional, national health survey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obesity is associated with morbidity, mortality, and increased health care costs. Few studies have examined the impact of obesity on outpatient office visits. The purpose of this study was to determine if outpatient visits by obese persons required more time with the provider and more prescription medication management compared to visits made by non-obese persons.</p> <p>Methods</p> <p>Obesity status was determined for 9,280 patient visits made by persons aged 18 years or older in the 2006 National Ambulatory Medical Care Survey. Multivariate analyses compared obese and non-obese visits, stratified by sex, for duration of the visit and the number of medications mentioned at the visit.</p> <p>Results</p> <p>Average duration of visit was higher among visits with patients determined to be obese. However, these differences were not considered significant after statistical testing. Visits made by obese female patients were significantly more likely to involve more than two prescription medications (OR 1.26, 95% CI 1.05 - 1.51) and visits made by obese male patients were significantly more likely to involve more than two prescription medications (OR 1.46, 95% CI 1.16 - 1.83) as compared to visits made by non-obese patients.</p> <p>Conclusion</p> <p>Time spent with the provider was found to be greater among visits with obese patients, but not significantly different from visits with non-obese patients. The number of medications for each visit was found to be significantly greater for visits where the patient was considered to be obese. Increased time for the visit and increased numbers of medication for each visit translate into increased costs. These findings document the impact of obesity on our health care system and have great implications on medical care cost and planning.</p

    Parameterized Verification of Systems with Global Synchronization and Guards

    Get PDF
    Inspired by distributed applications that use consensus or other agreement protocols for global coordination, we define a new computational model for parameterized systems that is based on a general global synchronization primitive and allows for global transition guards. Our model generalizes many existing models in the literature, including broadcast protocols and guarded protocols. We show that reachability properties are decidable for systems without guards, and give sufficient conditions under which they remain decidable in the presence of guards. Furthermore, we investigate cutoffs for reachability properties and provide sufficient conditions for small cutoffs in a number of cases that are inspired by our target applications.Comment: Accepted at CAV 202

    The White Dwarf Luminosity Functions from the Pan-STARRS 1 3π Steradian Survey

    Get PDF
    A large sample of white dwarfs is selected by both proper motion and colours from the Pan-STARRS 1 3{\pi} Steradian Survey Processing Version 2 to construct the White Dwarf Luminosity Functions of the discs and halo in the solar neighbourhood. Four-parameter astrometric solutions were recomputed from the epoch data. The generalised maximum volume method is then used to calculate the density of the populations. After removal of crowded areas near the Galactic plane and centre, the final sky area used by this work is 7.833 sr, which is 83% of the 3{\pi} sky and 62% of the whole sky. By dividing the sky using Voronoi tessellation, photometric and astrometric uncertainties are recomputed at each step of the integration to improve the accuracy of the maximum volume. Interstellar reddening is considered throughout the work. We find a disc-to-halo white dwarf ratio of about 100

    Convective core entrainment in 1D main-sequence stellar models

    Get PDF
    3D hydrodynamics models of deep stellar convection exhibit turbulent entrainment at the convective-radiative boundary which follows the entrainment law, varying with boundary penetrability. We implement the entrainment law in the 1D Geneva stellar evolution code. We then calculate models between 1.5 and 60 M⊙ at solar metallicity (Z = 0.014) and compare them to previous generations of models and observations on the main sequence. The boundary penetrability, quantified by the bulk Richardson number, RiB, varies with mass and to a smaller extent with time. The variation of RiB with mass is due to the mass dependence of typical convective velocities in the core and hence the luminosity of the star. The chemical gradient above the convective core dominates the variation of RiB with time. An entrainment law method can therefore explain the apparent mass dependence of convective boundary mixing through RiB. New models including entrainment can better reproduce the mass dependence of the main-sequence width using entrainment law parameters A ∌ 2 × 10−4 and n = 1. We compare these empirically constrained values to the results of 3D hydrodynamics simulations and discuss implications

    Promptness and Bounded Fairness in Concurrent and Parameterized Systems

    Get PDF
    We investigate the satisfaction of specifications in Prompt Linear Temporal Logic (Prompt-LTL) by concurrent systems. Prompt-LTL is an extension of LTL that allows to specify parametric bounds onthe satisfaction of eventualities, thus adding a quantitative aspect to the specification language. We establish a connection between bounded fairness, bounded stutter equivalence, and the satisfaction of Prompt-LTL\X formulas. Based on this connection, we prove the first cutoff results for different classes of systems with a parametric number of components and quantitative specifications, thereby identifying previously unknown decidable fragments of the parameterized model checking problem

    Glyoxal yield from isoprene oxidation and relation to formaldehyde: chemical mechanism, constraints from SENEX aircraft observations, and interpretation of OMI satellite data

    Get PDF
    Glyoxal (CHOCHO) is produced in the atmosphere by the oxidation of volatile organic compounds (VOCs). Like formaldehyde (HCHO), another VOC oxidation product, it is measurable from space by solar backscatter. Isoprene emitted by vegetation is the dominant source of CHOCHO and HCHO in most of the world. We use aircraft observations of CHOCHO and HCHO from the SENEX campaign over the southeast US in summer 2013 to better understand the CHOCHO time-dependent yield from isoprene oxidation, its dependence on nitrogen oxides (NOx  ≡  NO + NO2), the behavior of the CHOCHO–HCHO relationship, the quality of OMI CHOCHO satellite observations, and the implications for using CHOCHO observations from space as constraints on isoprene emissions. We simulate the SENEX and OMI observations with the Goddard Earth Observing System chemical transport model (GEOS-Chem) featuring a new chemical mechanism for CHOCHO formation from isoprene. The mechanism includes prompt CHOCHO formation under low-NOx conditions following the isomerization of the isoprene peroxy radical (ISOPO2). The SENEX observations provide support for this prompt CHOCHO formation pathway, and are generally consistent with the GEOS-Chem mechanism. Boundary layer CHOCHO and HCHO are strongly correlated in the observations and the model, with some departure under low-NOx conditions due to prompt CHOCHO formation. SENEX vertical profiles indicate a free-tropospheric CHOCHO background that is absent from the model. The OMI CHOCHO data provide some support for this free-tropospheric background and show southeast US enhancements consistent with the isoprene source but a factor of 2 too low. Part of this OMI bias is due to excessive surface reflectivities assumed in the retrieval. The OMI CHOCHO and HCHO seasonal data over the southeast US are tightly correlated and provide redundant proxies of isoprene emissions. Higher temporal resolution in future geostationary satellite observations may enable detection of the prompt CHOCHO production under low-NOx conditions apparent in the SENEX data

    The earth as a radio source

    Get PDF
    The primary characteristics of radio emission from the earth's magnetosphere are summarized, the origins of these missions are considered and similarities to other astronomical radio sources discussed. The auroral kilometric radiation has features very similar to Io-related decametric radiation from Jupiter and from Saturn. The radiation at fp and 2 fp upstream of the bow shock appears to be generated by the same mechanism as type III solar radio bursts. The beaming of the auroral kilometric radiation into a cone shaped region over the polar cap has some similarity to the angular distribution of radiation from Io and to the beaming of radio emission from pulsars

    3D Simulations and MLT. I. Renzini’s Critique

    Get PDF
    Renzini wrote an influential critique of “overshooting” in mixing-length theory (MLT), as used in stellar evolution codes, and concluded that three-dimensional fluid dynamical simulations were needed. Such simulations are now well tested. Implicit large eddy simulations connect large-scale stellar flow to a turbulent cascade at the grid scale, and allow the simulation of turbulent boundary layers, with essentially no assumptions regarding flow except the number of computational cells. Buoyant driving balances turbulent dissipation for weak stratification, as in MLT, but with the dissipation length replacing the mixing length. The turbulent kinetic energy in our computational domain shows steady pulses after 30 turnovers, with no discernible diminution; these are caused by the necessary lag in turbulent dissipation behind acceleration. Interactions between coherent turbulent structures give multi-modal behavior, which drives intermittency and fluctuations. These cause mixing, which may justify use of the instability criterion of Schwarzschild rather than the Ledoux. Chaotic shear flow of turning material at convective boundaries causes instabilities that generate waves and sculpt the composition gradients and boundary layer structures. The flow is not anelastic; wave generation is necessary at boundaries. A self-consistent approach to boundary layers can remove the need for ad hoc procedures of “convective overshooting” and “semi-convection.” In Paper II, we quantify the adequacy of our numerical resolution in a novel way, determine the length scale of dissipation—the “mixing length”—without astronomical calibration, quantify agreement with the four-fifths law of Kolmogorov for weak stratification, and deal with strong stratification

    Patients' Experience of therapeutic footwear whilst living at risk of neuropathic diabetic foot ulceration: an interpretative phenomenological analysis (IPA).

    Get PDF
    BACKGROUND: Previous work has found that people with diabetes do not wear their therapeutic footwear as directed, but the thinking behind this behaviour is unclear. Adherence to therapeutic footwear advice must improve in order to reduce foot ulceration and amputation risk in people with diabetes and neuropathy. Therefore this study aimed to explore the psychological influences and personal experiences behind the daily footwear selection of individuals with diabetes and neuropathy. METHODS: An interpretative phenomenological analysis (IPA) approach was used to explore the understanding and experience of therapeutic footwear use in people living at risk of diabetic neuropathic foot ulceration. This study benefited from the purposive selection of a small sample of four people and used in-depth semi structured interviews because it facilitated the deep and detailed examination of personal thoughts and feelings behind footwear selection. FINDINGS: Four overlapping themes that interact to regulate footwear choice emerged from the analyses: a) Self-perception dilemma; resolving the balance of risk experienced by people with diabetes and neuropathy day to day, between choosing to wear footwear to look and feel normal and choosing footwear to protect their feet from foot ulceration; b) Reflective adaption; The modification and individualisation of a set of values about footwear usage created in the minds of people with diabetes and neuropathy; c) Adherence response; The realignment of footwear choice with personal values, to reinforce the decision not to change behaviour or bring about increased footwear adherence, with or without appearance management; d) Reality appraisal; A here and now appraisal of the personal benefit of footwear choice on emotional and physical wellbeing, with additional consideration to the preservation of therapeutic footwear. CONCLUSION: For some people living at risk of diabetic neuropathic foot ulceration, the decision whether or not to wear therapeutic footwear is driven by the individual 'here and now', risks and benefits, of footwear choice on emotional and physical well-being for a given social context
    • 

    corecore