750 research outputs found

    Full Stokes imaging polarimetry using dielectric metasurfaces

    Full text link
    Polarization is a degree of freedom of light carrying important information that is usually absent in intensity and spectral content. Imaging polarimetry is the process of determining the polarization state of light, either partially or fully, over an extended scene. It has found several applications in various fields, from remote sensing to biology. Among different devices for imaging polarimetry, division of focal plane polarization cameras (DoFP-PCs) are more compact, less complicated, and less expensive. In general, DoFP-PCs are based on an array of polarization filters in the focal plane. Here we demonstrate a new principle and design for DoFP-PCs based on dielectric metasurfaces with the ability to control polarization and phase. Instead of polarization filtering, the method is based on splitting and focusing light in three different polarization bases. Therefore, it enables full-Stokes characterization of the state of polarization, and overcomes the 50% theoretical efficiency limit of the polarization-filter-based DoFP-PCs.Comment: 20 pages, 4 figure

    (1,0) superconformal models in six dimensions

    Get PDF
    We construct six-dimensional (1,0) superconformal models with non-abelian gauge couplings for multiple tensor multiplets. A crucial ingredient in the construction is the introduction of three-form gauge potentials which communicate degrees of freedom between the tensor multiplets and the Yang-Mills multiplet, but do not introduce additional degrees of freedom. Generically these models provide only equations of motions. For a subclass also a Lagrangian formulation exists, however it appears to exhibit indefinite metrics in the kinetic sector. We discuss several examples and analyze the excitation spectra in their supersymmetric vacua. In general, the models are perturbatively defined only in the spontaneously broken phase with the vev of the tensor multiplet scalars serving as the inverse coupling constants of the Yang-Mills multiplet. We briefly discuss the inclusion of hypermultiplets which complete the field content to that of superconformal (2,0) theories.Comment: 30 pages, v2: Note, some comments and references adde

    Electrical control over single hole spins in nanowire quantum dots

    Get PDF
    Single electron spins in semiconductor quantum dots (QDs) are a versatile platform for quantum information processing, however controlling decoherence remains a considerable challenge. Recently, hole spins have emerged as a promising alternative. Holes in III-V semiconductors have unique properties, such as strong spin-orbit interaction and weak coupling to nuclear spins, and therefore have potential for enhanced spin control and longer coherence times. Weaker hyperfine interaction has already been reported in self-assembled quantum dots using quantum optics techniques. However, challenging fabrication has so far kept the promise of hole-spin-based electronic devices out of reach in conventional III-V heterostructures. Here, we report gate-tuneable hole quantum dots formed in InSb nanowires. Using these devices we demonstrate Pauli spin blockade and electrical control of single hole spins. The devices are fully tuneable between hole and electron QDs, enabling direct comparison between the hyperfine interaction strengths, g-factors and spin blockade anisotropies in the two regimes

    Environmental Factors in the Relapse and Recurrence of Inflammatory Bowel Disease:A Review of the Literature

    Get PDF
    The causes of relapse in patients with Crohn's disease (CD) and ulcerative colitis (UC) are largely unknown. This paper reviews the epidemiological and clinical data on how medications (non-steroidal anti-inflammatory drugs, estrogens and antibiotics), lifestyle factors (smoking, psychological stress, diet and air pollution) may precipitate clinical relapses and recurrence. Potential biological mechanisms include: increasing thrombotic tendency, imbalances in prostaglandin synthesis, alterations in the composition of gut microbiota, and mucosal damage causing increased permeability

    Ultrafast optical control of entanglement between two quantum dot spins

    Full text link
    The interaction between two quantum bits enables entanglement, the two-particle correlations that are at the heart of quantum information science. In semiconductor quantum dots much work has focused on demonstrating single spin qubit control using optical techniques. However, optical control of entanglement of two spin qubits remains a major challenge for scaling from a single qubit to a full-fledged quantum information platform. Here, we combine advances in vertically-stacked quantum dots with ultrafast laser techniques to achieve optical control of the entangled state of two electron spins. Each electron is in a separate InAs quantum dot, and the spins interact through tunneling, where the tunneling rate determines how rapidly entangling operations can be performed. The two-qubit gate speeds achieved here are over an order of magnitude faster than in other systems. These results demonstrate the viability and advantages of optically controlled quantum dot spins for multi-qubit systems.Comment: 24 pages, 5 figure

    Isotope sensitive measurement of the hole-nuclear spin interaction in quantum dots

    Full text link
    Decoherence caused by nuclear field fluctuations is a fundamental obstacle to the realization of quantum information processing using single electron spins. Alternative proposals have been made to use spin qubits based on valence band holes having weaker hyperfine coupling. However, it was demonstrated recently both theoretically and experimentally that the hole hyperfine interaction is not negligible, although a consistent picture of the mechanism controlling the magnitude of the hole-nuclear coupling is still lacking. Here we address this problem by performing isotope selective measurement of the valence band hyperfine coupling in InGaAs/GaAs, InP/GaInP and GaAs/AlGaAs quantum dots. Contrary to existing models we find that the hole hyperfine constant along the growth direction of the structure (normalized by the electron hyperfine constant) has opposite signs for different isotopes and ranges from -15% to +15%. We attribute such changes in hole hyperfine constants to the competing positive contributions of p-symmetry atomic orbitals and the negative contributions of d-orbitals. Furthermore, we find that the d-symmetry contribution leads to a new mechanism for hole-nuclear spin flips which may play an important role in hole spin decoherence. In addition the measured hyperfine constants enable a fundamentally new approach for verification of the computed Bloch wavefunctions in the vicinity of nuclei in semiconductor nanostructures

    Prostate cancer risk related to foods, food groups, macronutrients and micronutrients derived from the UK Dietary Cohort Consortium food diaries.

    Get PDF
    BACKGROUND/OBJECTIVES: The influence of dietary factors remains controversial for screen-detected prostate cancer and inconclusive for clinically detected disease. We aimed to examine these associations using prospectively collected food diaries. SUBJECTS/METHODS: A total of 1,717 prostate cancer cases in middle-aged and older UK men were pooled from four prospective cohorts with clinically detected disease (n=663), with routine data follow-up (means 6.6-13.3 years) and a case-control study with screen-detected disease (n=1054), nested in a randomised trial of prostate cancer treatments (ISCTRN 20141297). Multiple-day food diaries (records) completed by men prior to diagnosis were used to estimate intakes of 37 selected nutrients, food groups and items, including carbohydrate, fat, protein, dairy products, fish, meat, fruit and vegetables, energy, fibre, alcohol, lycopene and selenium. Cases were matched on age and diary date to at least one control within study (n=3528). Prostate cancer risk was calculated, using conditional logistic regression (adjusted for baseline covariates) and expressed as odds ratios in each quintile of intake (±95% confidence intervals). Prostate cancer risk was also investigated by localised or advanced stage and by cancer detection method. RESULTS: There were no strong associations between prostate cancer risk and 37 dietary factors. CONCLUSIONS: Prostate cancer risk, including by disease stage, was not strongly associated with dietary factors measured by food diaries in middle-aged and older UK men.Medical Research Council (Grant ID: MC_UU_12019/1), Medical Research Council Population Health Sciences Research Network, British Heart Foundation, Cancer Research UK (Grant ID: C8221/A19170), Department of Health, Food Standards Agency, Stroke Association, WCRF, National Institute for Health Research Health Technology Assessment Programme (Project IDs: 96/20/06, 96/20/99), National Cancer Research Institute (formed by Cancer Research UK, Medical Research Council, Department of Health)This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ejcn.2016.16

    Explaining gender differences in non-fatal suicidal behaviour among adolescents: a population-based study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While suicide is the second leading cause of death among young people in most industrial countries, non-fatal suicidal behaviour is also a very important public health concern among adolescents. The aim of this study was to investigate gender differences in prevalence and emotional and behavioural correlates of suicidal behaviour in a representative school-based sample of adolescents.</p> <p>Methods</p> <p>A cross-sectional design was used to assess suicidal behaviour and various areas of emotional and behavioural problems by using a self-report booklet including the Youth Self-Report. One hundred sixteen schools in a region of Southern Germany agreed to participate. A representative sample of 5,512 ninth-grade students was studied. Mean age was 14.8 years (SD 0.73); 49.8% were female.</p> <p>Results</p> <p>Serious suicidal thoughts were reported by 19.8% of the female students and 10.8% of the females had ever attempted suicide. In the male group, 9.3% had a history of suicidal thoughts and 4.9% had previously attempted suicide. Internalizing emotional and behavioural problems were shown to be higher in the female group (difference of the group means 4.41) while externalizing emotional and behavioural problems slightly predominated in male students (difference of the group means -0.65). However, the total rate of emotional and behavioural problems was significantly higher in the adolescent female group (difference of the group means 4.98). Using logistic regression models with suicidal thoughts or attempted suicide as dependent variables, the pseudo-R<sup>2</sup> of gender alone was only 2.7% or 2.3%, while it was 30% or 23.2% for emotional and behavioural problems measured by the YSR syndrome scales. By adding gender to the emotional and behavioural problems only an additional 0.3% of information could be explained.</p> <p>Conclusions</p> <p>The findings suggest that gender differences in non-fatal suicidal behaviour among adolescents can to a large extent be explained by the gender differences in emotional and behavioural problems during this age.</p

    Designing the ideal model for assessment of wound contamination after gunshot injuries: a comparative experimental study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Modern high-velocity projectiles produce temporary cavities and can thus cause extensive tissue destruction along the bullet path. It is still unclear whether gelatin blocks, which are used as a well-accepted tissue simulant, allow the effects of projectiles to be adequately investigated and how these effects are influenced by caliber size.</p> <p>Method</p> <p>Barium titanate particles were distributed throughout a test chamber for an assessment of wound contamination. We fired .22-caliber Magnum bullets first into gelatin blocks and then into porcine hind limbs placed behind the chamber. Two other types of bullets (.222-caliber bullets and 6.5 Ă— 57 mm cartridges) were then shot into porcine hind limbs. Permanent and temporary wound cavities as well as the spatial distribution of barium titanate particles in relation to the bullet path were evaluated radiologically.</p> <p>Results</p> <p>A comparison of the gelatin blocks and hind limbs showed significant differences (<it>p </it>< 0.05) in the mean results for all parameters. There were significant differences between the bullets of different calibers in the depth to which barium titanate particles penetrated the porcine hind limbs. Almost no particles, however, were found at a penetration depth of 10 cm or more. By contrast, gas cavities were detected along the entire bullet path.</p> <p>Conclusion</p> <p>Gelatin is only of limited value for evaluating the path of high-velocity projectiles and the contamination of wounds by exogenous particles. There is a direct relationship between the presence of gas cavities in the tissue along the bullet path and caliber size. These cavities, however, are only mildly contaminated by exogenous particles.</p

    Optical control of one and two hole spins in interacting quantum dots

    Full text link
    A single hole spin in a semiconductor quantum dot has emerged as a quantum bit that is potentially superior to an electron spin. A key feature of holes is that they have a greatly reduced hyperfine interaction with nuclear spins, which is one of the biggest difficulties in working with an electron spin. It is now essential to show that holes are viable for quantum information processing by demonstrating fast quantum gates and scalability. To this end we have developed InAs/GaAs quantum dots coupled through coherent tunneling and charged with controlled numbers of holes. We report fast, single qubit gates using a sequence of short laser pulses. We then take the important next step toward scalability of quantum information by optically controlling two interacting hole spins in separate dots.Comment: 5 figure
    • …
    corecore