95 research outputs found

    Bridging the knowing–doing gap in South Africa and the role of environmental volunteer groups

    Get PDF
    The implementation gap between science, policy and practice has led to loss of biodiversity and ecosystem services throughout Africa and is described in a case study from Limpopo Province, South Africa. In 2006, the South African National Biodiversity Institute first highlighted the Woodbush Granite Grassland (WGG) in the Greater Tzaneen Local Municipality as the only Critically Endangered ecosystem in Limpopo Province. Five years later (2011), the Critically Endangered listing was published in the Government Gazette No. 34809. After repeated and sustained efforts for many years from volunteers of a local environmental group - currently known as the Friends of the Haenertsburg Grassland (FroHG) - in 2015 the intent to formally protect 126 ha was published in the Government Gazette No. 2609. Unfortunately, the proposed protected area accounts for only 66% of the largest remaining fragment of WGG, which excludes an important colony of medicinal plants. Considering that only 6% of the original extent of WGG remains in an untransformed state the whole fragment should be conserved. Non-alignment of municipal spatial priorities, as in the Haenertsburg town plan from 1896, to provincial and national environmental priorities has resulted in numerous incidents that have degraded what little remains of the WGG ecosystem. Failure of the provincial authorities to act timeously to enforce environmental regulations resulted in the FroHG successfully involving national authorities to stop illegal land occupation while another incident involving an illegal fence was resolved 9 years after erection. A strengthened relationship with Lepelle Northern Water has resulted in better planning of activities in relation to an existing pipeline. This case study shows various avenues available to environmental volunteer groups in South Africa and suggests that long-term lobbying can yield positive results. Conservation implications: Formal conservation of WGG through the intended nature reserve proclamation represents application of environmental legislation (notably Listing Notice 3, National Environmental Management Act 107 of 1998: Environmental Impact Assessment Regulations, 2014), scientific recommendations and policy. Better cooperation between provincial administration and FroHG will benefit the protection and management of WGG.NCS201

    Archetypes of climate-risk profiles among rural households in Limpopo, South Africa

    Get PDF
    More frequent and intense climate hazards, a predicted outcome of climate change, are likely to threaten existing livelihoods in rural communities, undermining households' adaptive capacity. To support households' efforts to manage and reduce this risk, there is a need to better understand the heterogeneity of risk within and between communities. The Intergovernmental Panel on Climate Change revised their climate vulnerability framework to incorporate the concept of risk. This study contributes toward the operationalization of this updated framework by applying a recognized methodology to the analysis of the climate-related risk of rural households. Using a mixed-method approach, including a cluster analysis, it determined and assessed archetypical patterns of household risk. The approach was applied to 170 households in two villages, in different agroecological zones, in the Vhembe District Municipality of South Africa's Limpopo Province. Six archetypical climate-risk profiles were identified based on differences in the core components of risk, namely, the experience of climate hazards, the degree of exposure and vulnerability, and the associated impacts. The method's application is illustrated by interpreting the six profiles, with possible adaptation pathways suggested for each. The archetypes show how climate-related risk varies according to households' livelihood strategies and capital endowments. There are clear site-related distinctions between the risk profiles; however, the age of the household and the gender of the household head also differentiate the profiles. These different profiles suggest the need for adaptation responses that account for these site-related differences, while still recognizing the heterogeneity of risk at the village level

    Muthi traders on the Witwatersrand, South Africa - an urban mosaic

    Get PDF
    The Witwatersrand is an extensively urbanised complex in Gauteng, South Africa. The complex is divided into three regions, namely the East Rand, Johannesburg and West Rand. In February 1994, prior to the democratic elections, a study of the trade in traditional herbal medicines in the region was initiated. Before the survey of the plant species could commence the regional distribution of the herb-traders and also their ethnicity and gender was established in order to select traders for the study that were proportionately representative of the herb-traders actually present. Using municipal trade licence records, telephone directories and personal communications the nature of the 'urban mosaic' of herb-traders was established. There were approximately 244 herb-traders in 1994, 70% of whom were located in Johannesburg, 20% in the East Rand and 10% in the West Rand In addition, 52% of the traders were Black followed by Indian (25%), White (16%) and Coloured (1%). Since the elections the pattern of the mosaic has visibly altered to reflect the current pattern of South Africa's demography more accurately

    Land-cover change in the Kruger to Canyons Biosphere Reserve 1993-2006): A first step towards creating a conservation plan for the subregion.

    Get PDF
    This paper is a first step towards a conservation plan for the Kruger to Canyons Biosphere Reserve K2C) on the South African Central Lowveld, quantifying the historical land-cover trends 1993-2006). During the analysis period, 36% of the biosphere reserve BR) underwent land-cover change. Settlement areas increased by 39.7%, mainly in rural areas, becoming denser, particularly along roadways. Human-Impacted Vegetation increased by 6.8% and Intact Vegetation declined by 7.3%, predominantly around settlement areas, which is testament to the interdependency between rural communities and the local environment. However, settlement expansion exceeded the rate of rangeland growth; in the long term, this may raise questions for sustainable resource extraction. Similarly, the block losses of intact vegetation are of concern; issues of fragmentation arise, with knock-on effects for ecosystem functioning. In the economic sector, agriculture increased by 51.9%, while forestry and mining declined by 7.1% and 6.3%, respectively. The future of these three sectors may also have significant repercussions for land-cover change in the BR. The identification of historical drivers, along with the chance that existing trends may continue, will have important implications for biodiversity protection in this landscape. Applied within a conservation-planning framework, these land-cover data, together with economic and biodiversity data, will help reconcile the spatial requirements of socio-economic development with those of conservation.SP201

    Arbuscular mycorrhiza status of gold and uranium tailings and surrounding soils of South Africa's deep level gold mines. II. Infectivity

    Get PDF
    AbstractAn AMF infectivity study and spore viability assessment was performed on substrata obtained from gold and uranium mine tailings dumps (‘slimes dams’) in the North West and Free State provinces of South Africa. Three slimes dams in each region were categorized as recently vegetated (RV), old vegetated (OV) and never vegetated (NV), and dams then divided into five zones based on elevation above ground level, steepness and broad chemical differences. Rhizosphere samples were collected from two of three plant species common to all sites; Eragrostis curvula, Atriplex semibaccata and Cynodon dactylon, as well as from bare areas, in order to allow comparisons across all site categories because of the rarity of the grasses on the lower slope of NV dams. Infectivity was determined by the mean infection percentage method from a bioassay of the substrata using Eragrostis curvula cv Ermelo as a host plant. There was no difference in total infectivity between North West and Free State substrata, but within regions, there were differences in infectivity between rehabilitation ages, between zones, and between rhizosphere and bare areas. Toepaddock substrata and veld soil produced the highest total infection levels overall. On both dams and veld, total arbuscular levels differed between rhizosphere and bare substrata, and the percentage of arbuscules (max. 15.4%) and vesicles (max. 22.0%) as a proportion of total infection structures was low. A low correlation between infectivity and total spore numbers was also found. Spore numbers and the numbers of viable spores increased with zone down the slimes dams to the veld, and also differed within zones between rhizosphere and bare substrata with marked interactive effects. Substratum organic matter (SOM) levels differed between regions, and between zones within the North West region increasing with distance down the slopes to the veld, and were strongly correlated with total spore numbers. Substratum pH values and most AMF parameters were positively correlated in the order of RV>OV>NV dams, indicating that natural colonization of acidic NV sites by AMF is at very low rates, and that AMF colonizing RV slopes are not surviving the transition from RV to OV, with the associated increase in acidity, conductivity and decline in plant cover. Substratum conductivity differed between zones in both regions, with minor interaction between region and zone, and was negatively correlated with pH, AMF infectivity and total spore numbers. Our findings demonstrate that the ameliorant effects of liming and irrigation on substratum pH and conductivity are short-lived, but despite the physico-chemical constraints, a significant measurable AMF inoculum potential does exist on all substrata. Amelioration of tailings with organic matter and use of acid and salt-tolerant AMF would be expected to contribute to more persistent AMF communities and vegetation on gold and uranium slimes dams

    Systematic land-cover change in KwaZulu-Natal, South Africa: Implications for biodiversity.

    Get PDF
    Land-cover change and habitat loss are widely recognised as the major drivers of biodiversity loss in the world. Land-cover maps derived from satellite imagery provide useful tools for monitoring land-use and land-cover change. KwaZulu-Natal, a populous yet biodiversity-rich province in South Africa, is one of the first provinces to produce a set of three directly comparable land-cover maps (2005, 2008 and 2011). These maps were used to investigate systematic land-cover changes occurring in the province with a focus on biodiversity conservation. The Intensity Analysis framework was used for the analysis as this quantitative hierarchical method addresses shortcomings of other established land-cover change analyses. In only 6 years (2005-2011), a massive 7.6% of the natural habitat of the province was lost to anthropogenic transformation of the landscape. The major drivers of habitat loss were agriculture, timber plantations, the built environment, dams and mines. Categorical swapping formed a significant part of landscape change, including a return from anthropogenic categories to secondary vegetation, which we suggest should be tracked in analyses. Longer-term rates of habitat loss were determined using additional land-cover maps (1994, 2000). An average of 1.2% of the natural landscape has been transformed per annum since 1994. Apart from the direct loss of natural habitat, the anthropogenically transformed land covers all pose additional negative impacts for biodiversity remaining in these or surrounding areas. A target of no more than 50% of habitat loss should be adopted to adequately conserve biodiversity in the province. Our analysis provides the first provincial assessment of the rate of loss of natural habitat and may be used to fulfil incomplete criteria used in the identification of Threatened Terrestrial Ecosystems, and to report on the Convention on Biological Diversity targets on rates of natural habitat loss.SP201

    What lies beneath : detecting sub-canopy changes in savanna woodlands using a three-dimensional classification method

    Get PDF
    QUESTION : Increasing population pressure, socio-economic development and associated natural resource use in savannas are resulting in large-scale land cover changes, which can be mapped using remote sensing. Is a three-dimensional (3D) woody vegetation structural classification applied to LiDAR (Light Detection and Ranging) data better than a 2D analysis to investigate change in fine-scale woody vegetation structure over 2 yrs in a protected area (PA) and a communal rangeland (CR)? LOCATION : Bushbuckridge Municipality and Sabi Sand Wildtuin, NE South Africa. METHODS : Airborne LiDAR data were collected over 3 300 ha in April 2008 and 2010. Individual tree canopies were identified using object-based image analysis and classified into four height classes: 1–3, 3–6, 6–10 and >10 m. Four structural metrics were calculated for 0.25-ha grid cells: canopy cover, number of canopy layers present, cohesion and number of height classes present. The relationship between top-of-canopy cover and sub-canopy cover was investigated using regression. Gains, losses and persistence (GLP) of cover at each height class and the four structural metrics were calculated. GLP of clusters of each structural metric (calculated using LISA – Local Indicators of Spatial Association – statistics) were used to assess the changes in clusters of eachmetric over time. RESULTS : Top-of-canopy cover was not a good predictor of sub-canopy cover. The number of canopy layers present and cohesion showed gains and losseswith persistence in canopy cover over time, necessitating the use of a 3D classification to detect fine-scale changes, especially in structurally heterogeneous savannas. Trees >3 min height showed recruitment and gains up to 2.2 times higher in the CR where they are likely to be protected for cultural reasons, but losses of up to 3.2-foldmore in the PA, possibly due to treefall caused by elephant and/or fire. CONCLUSION : Land use has affected sub-canopy structure in the adjacent sites, with the low intensity use CR showing higher structural diversity. A 3D classification approach was successful in detecting fine-scale, short-term changes between land uses, and can thus be used as amonitoring tool for savannawoody vegetation structure. Remove selectedThe Carnegie Airborne Observatory is made possible by the Avatar Alliance Foundation, Margaret A. Cargill Foundation, John D. and Catherine T. MacArthur Foundation, Grantham Foundation for the Protection of the Environment, W.M. Keck Foundation, Gordon and Betty Moore Foundation, Mary Anne Nyburg Baker and G. Leonard Baker Jr. and William R. Hearst III. Application of the CAO data in South Africa is made possible by the Andrew Mellon Foundation and the endowment of the Carnegie Institution for Science.http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1654-109X2016-07-31hb201

    Post-fire litter microsites: Safe for seeds, unsafe for seedlings

    Get PDF
    We explore the effect of post—fire microsites on seed and seedling distribution and hence their potential role in community restoration. A summer wildfire and control burn in a sclerophyll shrubland in mediterranean Australia produced mosaics of physically and chemically contrasting microsites of litter and sand. Most seeds (>75%) of all species released from the burnt canopies fell, or were redispersed by wind, into the litter patches after both fires. Data on microsite characteristics and wind exposure (fire intensity), height of fruits, time of release, and seed properties were required to interpret relative distribution between the litter and sand patches. Seeds remained equally viable (up to 100%) over summer—autumn in the litter and sand and had equally high rates and levels (up to 100%) of subsequent winter germination. However, seedlings were 2—3 times less likely to survive in the litter and survivors were 35% smaller than those in the sand by the end of the first summer. Banksia hookeriana was particularly vulnerable to microsite properties, whereas the needle—leaved Hakea polyathema showed only minor responses. Pre—summer thinning of seedlings in the litter increased survival of the remainder by 2 times and size of the survivors by 31%. The fire—sensitive, small—seeded B. hookeriana had 17 times more seeds in the backburn litter than the resprouting, larger—seeded B. attenuata, which more than compensated for its 3 times greater seedling mortality levels over the dry summer. Recruitment of species prone to density—dependent mortality in the litter was enhanced by the retention of some seeds in the sand where competition for water was minimal, as indicated by the 2.2 times greater stomal conductance of their seedlings in early summer
    • …
    corecore