18 research outputs found

    Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes

    Get PDF
    Myelodysplastic syndromes (MDS) are hematopoietic stem cell disorders that often progress to chemotherapy-resistant secondary acute myeloid leukemia (sAML). We used whole-genome sequencing to perform an unbiased comprehensive screen to discover the somatic mutations in a sample from an individual with sAML and genotyped the loci containing these mutations in the matched MDS sample. Here we show that a missense mutation affecting the serine at codon 34 (Ser34) in U2AF1 was recurrently present in 13 out of 150 (8.7%) subjects with de novo MDS, and we found suggestive evidence of an increased risk of progression to sAML associated with this mutation. U2AF1 is a U2 auxiliary factor protein that recognizes the AG splice acceptor dinucleotide at the 3' end of introns, and the alterations in U2AF1 are located in highly conserved zinc fingers of this protein. Mutant U2AF1 promotes enhanced splicing and exon skipping in reporter assays in vitro. This previously unidentified, recurrent mutation in U2AF1 implicates altered pre-mRNA splicing as a potential mechanism for MDS pathogenesis

    Studies on the degeneration and regeneration of neurons to skeletal muscle

    No full text
    SIGLEAvailable from British Library Document Supply Centre- DSC:D79685 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Absence of Wallerian degeneration does not hinder regeneration in peripheral nerve

    No full text
    Wallerian degeneration of the distal stump of a severed peripheral nerve involves invasion by myelomonocytic cells, whose presence is necessary for destruction of myelin and for initiating mitosis in Schwann cells (Beuche and Friede, 1984). Degeneration of the distal ends of the axons themselves is assumed to occur by autolytic mechanisms. We describe a strain of mice (C57BL/6/Ola) in which leucocyte invasion is slow and sparse. In these mice, confirming Beuche and Friede, myelin removal is extremely slow. A new finding is that axon degeneration is also very slow. This is a consequence of lack of recruitment of myelomonocytic cells for if such recruitment is prevented in other mouse strains by a monoclonal antibody against the complement type 3 receptor (Rosen and Gordon, 1987) axon degeneration is again slowed. We have also, surprisingly, found that nerve regeneration in the C57BL/6/Ola mice is not impeded by the presence of largely intact axons in the distal stump and absence of recruited cells, myelin debris and the absence of Schwann cell mitosis.</p
    corecore