2 research outputs found
First Results from the KMOS Lens-Amplified Spectroscopic Survey (KLASS): Kinematics of Lensed Galaxies at Cosmic Noon
We present the first results of the KMOS Lens-Amplified Spectroscopic Survey
(KLASS), a new ESO Very Large Telescope (VLT) large program, doing multi-object
integral field spectroscopy of galaxies gravitationally lensed behind seven
galaxy clusters selected from the HST Grism Lens-Amplified Survey from Space
(GLASS). Using the power of the cluster magnification we are able to reveal the
kinematic structure of 25 galaxies at , in four
cluster fields, with stellar masses . This sample includes 5 sources at with lower stellar masses
than in any previous kinematic IFU surveys. Our sample displays a diversity in
kinematic structure over this mass and redshift range. The majority of our
kinematically resolved sample is rotationally supported, but with a lower ratio
of rotational velocity to velocity dispersion than in the local universe,
indicating the fraction of dynamically hot disks changes with cosmic time. We
find no galaxies with stellar mass in our sample
display regular ordered rotation. Using the enhanced spatial resolution from
lensing, we resolve a lower number of dispersion dominated systems compared to
field surveys, competitive with findings from surveys using adaptive optics. We
find that the KMOS IFUs recover emission line flux from HST grism-selected
objects more faithfully than slit spectrographs. With artificial slits we
estimate slit spectrographs miss on average 60% of the total flux of emission
lines, which decreases rapidly if the emission line is spatially offset from
the continuum.Comment: Accepted for publication in Ap