20 research outputs found
A Generic Test of Modified Gravity Models which Emulate Dark Matter
We propose a generic test for models in which gravity is modified to do away
with dark matter. These models tend to have gravitons couple to a different
metric than ordinary matter. A strong test of such models comes from comparing
the arrival time of the gravitational wave pulse from a cosmological event such
as a supernova with the arrival times of the associated pulses of neutrinos and
photons. For SN 1987a we show that the gravity wave would have arrived 5.3 days
after the neutrino pulse.Comment: 4 pages, uses RevTex, no figure
New mechanism to cross the phantom divide
Recently, type Ia supernovae data appear to support a dark energy whose
equation of state crosses -1, which is a much more amazing problem than the
acceleration of the universe. We show that it is possible for the equation of
state to cross the phantom divide by a scalar field in the gravity with an
additional inverse power-law term of Ricci scalar in the Lagrangian. The
necessary and sufficient condition for a universe in which the dark energy can
cross the phantom divide is obtained. Some analytical solutions with or
are obtained. A minimal coupled scalar with different potentials,
including quadratic, cubic, quantic, exponential and logarithmic potentials are
investigated via numerical methods, respectively. All these potentials lead to
the crossing behavior. We show that it is a robust result which is hardly
dependent on the concrete form of the potential of the scalar.Comment: 11 pages, 5 figs, v3: several references added, to match the
published versio
Dissipative Future Universe without Big Rip
The present study deals with dissipative future universe without big rip in
context of Eckart formalism. The generalized chaplygin gas, characterized by
equation of state , has been considered as
a model for dark energy due to its dark-energy-like evolution at late time. It
is demonstrated that, if the cosmic dark energy behaves like a fluid with
equation of state ; , as well as chaplygin gas
simultaneously then the big rip problem does not arises and the scale factor is
found to be regular for all time.Comment: 6 pages, 2 figures, To appear in Int. J. Theor. Phy
Non-local SFT Tachyon and Cosmology
Cosmological scenarios built upon the generalized non-local String Field
Theory and -adic tachyons are examined. A general kinetic operator involving
an infinite number of derivatives is studied as well as arbitrary parameter
. The late time dynamics of just the tachyon around the non-perturbative
vacuum is shown to leave the cosmology trivial. A late time behavior of the
tachyon and the scale factor of the FRW metric in the presence of the
cosmological constant or a perfect fluid with is constructed explicitly
and a possibility of non-vanishing oscillations of the total effective state
parameter around the phantom divide is proven.Comment: 17 pages, LaTeX; v2: JHEP3 class is used, references adde
Loop Corrections to Cosmological Perturbations in Multi-field Inflationary Models
We investigate one-loop quantum corrections to the power spectrum of
adiabatic perturbation from entropy modes/adiabatic mode cross-interactions in
multiple DBI inflationary models. We find that due to the non-canonical kinetic
term in DBI models, the loop corrections are enhanced by slow-varying parameter
and small sound speed . Thus, in general the loop-corrections
in multi-DBI models can be large. Moreover, we find that the loop-corrections
from adiabatic/entropy cross-interaction vertices are IR finite.Comment: 21 pages, 7 figures; v2, typos corrected, ref added; v3 typos
corrected, version for publishing in jca
Comparison of Recent SnIa datasets
We rank the six latest Type Ia supernova (SnIa) datasets (Constitution (C),
Union (U), ESSENCE (Davis) (E), Gold06 (G), SNLS 1yr (S) and SDSS-II (D)) in
the context of the Chevalier-Polarski-Linder (CPL) parametrization
, according to their Figure of Merit (FoM), their
consistency with the cosmological constant (CDM), their consistency
with standard rulers (Cosmic Microwave Background (CMB) and Baryon Acoustic
Oscillations (BAO)) and their mutual consistency. We find a significant
improvement of the FoM (defined as the inverse area of the 95.4% parameter
contour) with the number of SnIa of these datasets ((C) highest FoM, (U), (G),
(D), (E), (S) lowest FoM). Standard rulers (CMB+BAO) have a better FoM by about
a factor of 3, compared to the highest FoM SnIa dataset (C). We also find that
the ranking sequence based on consistency with CDM is identical with
the corresponding ranking based on consistency with standard rulers ((S) most
consistent, (D), (C), (E), (U), (G) least consistent). The ranking sequence of
the datasets however changes when we consider the consistency with an expansion
history corresponding to evolving dark energy crossing the
phantom divide line (it is practically reversed to (G), (U), (E), (S),
(D), (C)). The SALT2 and MLCS2k2 fitters are also compared and some peculiar
features of the SDSS-II dataset when standardized with the MLCS2k2 fitter are
pointed out. Finally, we construct a statistic to estimate the internal
consistency of a collection of SnIa datasets. We find that even though there is
good consistency among most samples taken from the above datasets, this
consistency decreases significantly when the Gold06 (G) dataset is included in
the sample.Comment: 13 pages, 9 figures. Included recently released SDSS-II dataset.
Improved presentation. Main results unchanged. The mathematica files and
datasets used for the production of the figures may be downloaded from
http://leandros.physics.uoi.gr/datacomp
Bouncing and Accelerating Solutions in Nonlocal Stringy Models
A general class of cosmological models driven by a non-local scalar field
inspired by string field theories is studied. In particular cases the scalar
field is a string dilaton or a string tachyon. A distinguished feature of these
models is a crossing of the phantom divide. We reveal the nature of this
phenomena showing that it is caused by an equivalence of the initial non-local
model to a model with an infinite number of local fields some of which are
ghosts. Deformations of the model that admit exact solutions are constructed.
These deformations contain locking potentials that stabilize solutions.
Bouncing and accelerating solutions are presented.Comment: Minor corrections, references added, published in JHE
Compactly supported linearised observables in single-field inflation
We investigate the gauge-invariant observables constructed by smearing the graviton and inflaton fields by compactly supported tensors at linear order in general single-field inflation. These observables correspond to gauge-invariant quantities that can be measured locally. In particular, we show that these observables are equivalent to (smeared) local gaugeinvariant observables such as the linearisedWeyl tensor, which have better infrared properties than the graviton and inflaton fields. Special cases include the equivalence between the compactly supported gauge-invariant graviton observable and the smeared linearised Weyl tensor in Minkowski and de Sitter spaces. Our results indicate that the infrared divergences in the tensor and scalar perturbations in single-field inflation have the same status as in de Sitter space and are both a gauge artefact, in a certain technical sense, at tree level
Homogeneous cosmologies in generalized modified gravity
Dynamical system methods are used in the study of the stability of spatially
flat homogeneous cosmologies within a large class of generalized modified
gravity models in the presence of a relativistic matter-radiation fluid. The
present approach can be considered as the generalization of previous works in
which only cases were considered. Models described by an arbitrary
function of all possible geometric invariants are investigated and general
equations giving all critical points are derived.Comment: 13 pages, no figure