409 research outputs found

    Protogalactic Extension of the Parker Bound

    Get PDF
    We extend the Parker bound on the galactic flux F\cal F of magnetic monopoles. By requiring that a small initial seed field must survive the collapse of the protogalaxy, before any regenerative dynamo effects become significant, we develop a stronger bound. The survival and continued growth of an initial galactic seed field ≤10−9\leq 10^{-9}G demand that F≤5×10−21(m/1017GeV)cm−2sec−1sr−1{\cal F} \leq 5 \times 10^{-21} (m/10^{17} {GeV}) {cm}^{-2} {sec}^{-1} {sr}^{-1}. For a given monopole mass, this bound is four and a half orders of magnitude more stringent than the previous `extended Parker bound', but is more speculative as it depends on assumptions about the behavior of magnetic fields during protogalactic collapse. For monopoles which do not overclose the Universe (Ωm<1\Omega_m <1), the maximum flux allowed is now 8×10−198 \times 10^{-19} cm^{-2} s^{-1} sr^{-1}, a factor of 150 lower than the maximum flux allowed by the extended Parker bound.Comment: 9 pages, 1 eps figur

    Hetereogeneity in Neuronal Intrinsic Properties: A Possible Mechanism for Hub-Like Properties of the Rat Anterior Cingulate Cortex during Network Activity.

    Get PDF
    The anterior cingulate cortex (ACC) is vital for a range of brain functions requiring cognitive control and has highly divergent inputs and outputs, thus manifesting as a hub in connectomic analyses. Studies show diverse functional interactions within the ACC are associated with network oscillations in the β (20-30 Hz) and γ (30-80 Hz) frequency range. Oscillations permit dynamic routing of information within cortex, a function that depends on bandpass filter-like behavior to selectively respond to specific inputs. However, a putative hub region such as ACC needs to be able to combine inputs from multiple sources rather than select a single input at the expense of others. To address this potential functional dichotomy, we modeled local ACC network dynamics in the rat in vitro. Modal peak oscillation frequencies in the β- and γ-frequency band corresponded to GABAAergic synaptic kinetics as seen in other regions; however, the intrinsic properties of ACC principal neurons were highly diverse. Computational modeling predicted that this neuronal response diversity broadened the bandwidth for filtering rhythmic inputs and supported combination-rather than selection-of different frequencies within the canonical γ and β electroencephalograph bands. These findings suggest that oscillating neuronal populations can support either response selection (routing) or combination, depending on the interplay between the kinetics of synaptic inhibition and the degree of heterogeneity of principal cell intrinsic conductances.Wellcome Trus

    Conductivity of 2D many-component electron gas, partially-quantized by magnetic field

    Full text link
    The 2D semimetal consisting of heavy holes and light electrons is studied. The consideration is based on assumption that electrons are quantized by magnetic field while holes remain classical. We assume also that the interaction between components is weak and the conversion between components is absent. The kinetic equation for holes colliding with quantized electrons is utilized. It has been stated that the inter-component friction and corresponding correction to the dissipative conductivity σxx\sigma_{xx} {\it do not vanish at zero temperature} due to degeneracy of the Landau levels. This correction arises when the Fermi level crosses the Landau level. The limits of kinetic equation applicability were found. We also study the situation of kinetic memory when particles repeatedly return to the points of their meeting.Comment: 13 pages, 1 figur

    Magnetohydrodynamics and Plasma Cosmology

    Full text link
    We study the linear magnetohydrodynamic (MHD) equations, both in the Newtonian and the general-relativistic limit, as regards a viscous magnetized fluid of finite conductivity and discuss instability criteria. In addition, we explore the excitation of cosmological perturbations in anisotropic spacetimes, in the presence of an ambient magnetic field. Acoustic, electromagnetic (e/m) and fast-magnetosonic modes, propagating normal to the magnetic field, can be excited, resulting in several implications of cosmological significance.Comment: 9 pages, RevTeX, To appear in the Proceedings of the Peyresq X Meeting, IJTP Conference Serie

    A software reliability model based on a geometric sequence of failure rates

    Get PDF
    Software reliability models are an important tool in quality management and release planning. There is a large number of different models that often exhibit strengths in different areas. This paper proposes a model that is based on a geometric sequence (or progression) of the failure rates of faults. This property of the failure process was observed in practice at Siemens among others and led to the development of the proposed model. It is described in detail and evaluated using standard criteria. Most importantly, the model performs constantly well over several projects in terms of its predictive validity

    The Seven-sphere and its Kac-Moody Algebra

    Full text link
    We investigate the seven-sphere as a group-like manifold and its extension to a Kac-Moody-like algebra. Covariance properties and tensorial composition of spinors under S7S^7 are defined. The relation to Malcev algebras is established. The consequences for octonionic projective spaces are examined. Current algebras are formulated and their anomalies are derived, and shown to be unique (even regarding numerical coefficients) up to redefinitions of the currents. Nilpotency of the BRST operator is consistent with one particular expression in the class of (field-dependent) anomalies. A Sugawara construction is given.Comment: 22 pages. Macropackages used: phyzzx, epsf. Three epsf figure files appende

    Spherically symmetric dissipative anisotropic fluids: A general study

    Full text link
    The full set of equations governing the evolution of self--gravitating spherically symmetric dissipative fluids with anisotropic stresses is deployed and used to carry out a general study on the behaviour of such systems, in the context of general relativity. Emphasis is given to the link between the Weyl tensor, the shear tensor, the anisotropy of the pressure and the density inhomogeneity. In particular we provide the general, necessary and sufficient, condition for the vanishing of the spatial gradients of energy density, which in turn suggests a possible definition of a gravitational arrow of time. Some solutions are also exhibited to illustrate the discussion.Comment: 28 pages Latex. To appear in Phys.Rev.

    Stellar structure and compact objects before 1940: Towards relativistic astrophysics

    Full text link
    Since the mid-1920s, different strands of research used stars as "physics laboratories" for investigating the nature of matter under extreme densities and pressures, impossible to realize on Earth. To trace this process this paper is following the evolution of the concept of a dense core in stars, which was important both for an understanding of stellar evolution and as a testing ground for the fast-evolving field of nuclear physics. In spite of the divide between physicists and astrophysicists, some key actors working in the cross-fertilized soil of overlapping but different scientific cultures formulated models and tentative theories that gradually evolved into more realistic and structured astrophysical objects. These investigations culminated in the first contact with general relativity in 1939, when J. Robert Oppenheimer and his students George Volkoff and Hartland Snyder systematically applied the theory to the dense core of a collapsing neutron star. This pioneering application of Einstein's theory to an astrophysical compact object can be regarded as a milestone in the path eventually leading to the emergence of relativistic astrophysics in the early 1960s.Comment: 83 pages, 4 figures, submitted to the European Physical Journal

    The impacts of environmental warming on Odonata: a review

    Get PDF
    Climate change brings with it unprecedented rates of increase in environmental temperature, which will have major consequences for the earth's flora and fauna. The Odonata represent a taxon that has many strong links to this abiotic factor due to its tropical evolutionary history and adaptations to temperate climates. Temperature is known to affect odonate physiology including life-history traits such as developmental rate, phenology and seasonal regulation as well as immune function and the production of pigment for thermoregulation. A range of behaviours are likely to be affected which will, in turn, influence other parts of the aquatic ecosystem, primarily through trophic interactions. Temperature may influence changes in geographical distributions, through a shifting of species' fundamental niches, changes in the distribution of suitable habitat and variation in the dispersal ability of species. Finally, such a rapid change in the environment results in a strong selective pressure towards adaptation to cope and the inevitable loss of some populations and, potentially, species. Where data are lacking for odonates, studies on other invertebrate groups will be considered. Finally, directions for research are suggested, particularly laboratory studies that investigate underlying causes of climate-driven macroecological patterns
    • …
    corecore