1,546 research outputs found

    Springs–neaps cycles in daily total seabed light: Daylength-induced changes

    Get PDF
    AbstractIn shallow, tidal seas, daily total seabed light is determined largely by the interaction of the solar elevation cycle, the tidal cycle in water depth, and any temporal variability in turbidity. Since tidal range, times of low water, and often turbidity vary in regular ways over the springs–neaps cycle, daily total seabed light exhibits cycles of the same periodicity. Corresponding cycles are likely to be induced in the daily total primary production of benthic algae and plants, particularly those light-limited specimens occupying the lower reaches of a sub-tidal population. Consequently, this effect is an important control on the growth patterns, depth distribution and survival of, for example, macroalgal forests and seagrass meadows.Seasonal changes in daylength exert an important additional control on these cycles, as they alter the fraction of the tidal and turbidity cycles occurring within daylight hours. Bowers et al. (1997) modelled this phenomenon numerically and predicted that for a site with low water at about midday and midnight at neaps tides, 6am and 6pm at springs, daily total seabed light peaks at neaps in winter, but the ‘sense’ of the cycle ‘switches’ so that it peaks at springs in summer — the longer daylength permits the morning and evening low water springs to contribute substantially to the daily total. Observations for such a site in North Wales (UK), presented in this paper, show that no such ‘switch’ occurs, and neaps tides host the largest daily totals throughout the year. The predicted ‘switch’ is not observed because turbidity increases generally at spring tides, and specifically at low water springs, both of which were not accounted for in the model. Observations at a second site in Brittany (France), diametrically opposite in terms of the times of low water at neaps and at springs, indicate a peak at springs throughout the year.Analytical tools are developed to calculate the percentage of daily total sea surface irradiance reaching the bed at a site of interest on any given day, and to determine the sense of any springs–neaps cycle thereof for a given season. The conditions required for a ‘switch’ are explored graphically, resulting in the identification of criteria (and a useful parameter) for predicting their occurrence. Consequences for the growth patterns, depth limits and long-term survival of benthic algae and plants are discussed

    Social Media Use and Children’s Wellbeing

    Get PDF
    Childhood circumstances and behaviours have been shown to have important persistent effects in later life. One aspect of childhood that has changed dramatically in the past decade, and is causing concern among policy makers and other bodies responsible for safeguarding children, is the advent of social media, or online social networking. This research explores the effect of children’s digital social networking on their subjective wellbeing. We use a large representative sample of 10-15 year olds over the period 2010 to 2014 from the UK Household Longitudinal Study, and estimate the effect of time spent chatting on social websites on a number of outcomes which reflect how these children feel about different aspects of their life, specifically: school work; appearance; family; friends; school attended; and life as a whole. We deal with the potential endogeneity of social networking via an instrumental variables approach using information on broadband speeds and mobile phone signal strength published by Ofcom. Our results suggest that spending more time on social networks reduces the satisfaction that children feel with all aspects of their lives, except for their friendships; and that girls suffer more adverse effects than boys. As well as addressing policy makers’ concerns about the effects of digital technology on children, this work also contributes to wider debates about the socioeconomic consequences of the internet and digital technologies more generally, a debate which to date has largely been based on evidence from outside of the UK

    Large palaeophiid and nigerophiid snakes from Paleogene Trans-Saharan Seaway deposits of Mali

    Get PDF
    The Paleogene was a time of high diversity for snakes, and was characterized by some of the largest species known to have existed. Among these snakes were pan-Tethyan marine species of Nigerophiidae and Palaeophiidae. The latter family included the largest sea snake, Palaeophis colossaeus, known from the Trans-Saharan Seaway of Mali during the Eocene. This paper describes new material collected from Malian Trans-Saharan Seaway deposits, including additional material of Palaeophis colossaeus, a new, large species of nigerophiid, Amananulam sanogoi gen. et sp. nov., and a medium-sized snake of indeterminate affinities. The material provides new information on the intracolumnar variation of the vertebral column in Palaeophis colossaeus. We estimate the total length of each species by regression of vertebral measurements on body size. Both Palaeophis colossaeus and Amananulam sanogoi gen. et sp. nov. are the largest or among the largest members of their respective clades. The large size of Tethyan snakes may be indicative of higher temperatures in the tropics than are present today

    Beyond the tip of the seamount: Distinct megabenthic communities found beyond the charismatic summit sponge ground on an arctic seamount (Schulz Bank, Arctic Mid-Ocean Ridge)

    Get PDF
    Our understanding of the benthic communities on arctic seamounts and descriptions of such communities in habitat classification systems are limited. In recent years, Schulz Bank (73°52′N 7°30′E), a seamount on the Arctic Mid-Ocean Ridge (AMOR), has become well studied but the work has primarily focused on an arctic sponge ground at the summit. This has compounded a general assumption that the most biologically interesting community is on the summit alone. With the potential threat of deep-sea mining on nearby sites on AMOR, it is crucial to form a baseline understanding of the benthic megafaunal communities not only on the summit, but on the slopes and base of the seamount as well. Using video footage collected by a remotely operated vehicle in 2017 and 2018 to survey the seamount from 2700 to 580 m depth, several distinct megafauna communities on Schulz Bank were identified. Specifically, five biotopes, two of which were dominated by large structure-forming sponges, appeared to follow a depth gradient and change with the type of substrata present. The sponge-dominated communities on the summit and lower slope had the highest average community densities and number of morphotaxa per image compared to the upper slope and seamount base communities. Most notably, sponge-dominated bedrock walls on the lower slopes challenge the assumption that the summit is the most dense and diverse community on Schulz Bank. The results from this study lay the foundation for future research and conservation efforts of arctic sponge grounds by looking beyond the seamount summit to bring a full view of enigmatic sponge dominated ecosystems

    Vertical transport and electroluminescence in InAs/GaSb/InAs structures: GaSb thickness and hydrostatic pressure studies

    Full text link
    We have measured the current-voltage (I-V) of type II InAs/GaSb/InAs double heterojunctions (DHETs) with 'GaAs like' interface bonding and GaSb thickness between 0-1200 \AA. A negative differential resistance (NDR) is observed for all DHETs with GaSb thickness >> 60 \AA below which a dramatic change in the shape of the I-V and a marked hysteresis is observed. The temperature dependence of the I-V is found to be very strong below this critical GaSb thickness. The I-V characteristics of selected DHETs are also presented under hydrostatic pressures up to 11 kbar. Finally, a mid infra-red electroluminescence is observed at 1 bar with a threshold at the NDR valley bias. The band profile calculations presented in the analysis are markedly different to those given in the literature, and arise due to the positive charge that it is argued will build up in the GaSb layer under bias. We conclude that the dominant conduction mechanism in DHETs is most likely to arise out of an inelastic electron-heavy-hole interaction similar to that observed in single heterojunctions (SHETs) with 'GaAs like' interface bonding, and not out of resonant electron-light-hole tunnelling as proposed by Yu et al. A Zener tunnelling mechanism is shown to contribute to the background current beyond NDR.Comment: 8 pages 12 fig

    Meridional Circulation and Global Solar Oscillations

    Get PDF
    We investigate the influence of large-scale meridional circulation on solar p-modes by quasi-degenerate perturbation theory, as proposed by \cite{lavely92}. As an input flow we use various models of stationary meridional circulation obeying the continuity equation. This flow perturbs the eigenmodes of an equilibrium model of the Sun. We derive the signatures of the meridional circulation in the frequency multiplets of solar p-modes. In most cases the meridional circulation leads to negative average frequency shifts of the multiplets. Further possible observable effects are briefly discussed.Comment: 14 pages, 5 figures, submittted to Solar Physics Topical Issue "HELAS

    Charm Contribution to the Structure Function in Diffractive Deep Inelastic Scattering

    Get PDF
    The charm contribution to the structure functions of diffractive deep inelastic scattering is considered here within the context of the Ingelman-Schlein model. Numerical estimations of this contribution are made from parametrizations of the HERA data. Influence of the Pomeron flux factor is analized as well as the effect of the shape of the initial parton distribution employed in the calculations. The obtained results indicate that the charm contribution to diffractive deep inelastic process might be large enough to be measured in the HERA experiments.Comment: 16 pages, RevTeX, 6 figures, to be published in Physical Review
    • …
    corecore