14 research outputs found

    Calsequestrin as a risk factor in Graves’ hyperthyroidism and Graves’ ophthalmopathy patients

    Get PDF
    Background: The pathogenesis of Graves’ ophthalmopathy (GO), Graves’ hyperthyroidism (GH) and the mechanisms for its link to thyroid autoimmunity are poorly understood. Our research focuses on the role of the skeletal muscle calcium binding protein calsequestrin (CASQ1) in thyroid. We measured the concentration of the CASQ1 protein correlating levels with parameters of the eye signs, CASQ1 antibody levels and CASQ1 gene polymorphism rs3838284. Methods: CASQ1 protein was measured by quantitative Western Blotting. The protein concentrations were expressed as pmol/mg total protein by reference to CASQ1 standards. Results: Western blot analysis showed the presence of two forms of CASQ1 in the thyroid. The mean concentration of CASQ1 protein was significantly reduced in patients with Graves’ disease, compared to thyroid from control subjects with multi-nodular goitre or thyroid cancer. Although in patients with GO it was lower than that, compared with patients with GH this difference was not significant. Reduced CASQ1 in Graves’ thyroid correlated with the homozygous genotype of the rs3838284 CASQ1 polymorphism. Conclusions: Decreased CASQ1 in the thyroid of patients with Graves’ disease compared to thyroid from control subjects is not explained but may reflect consumption of the protein during an autoimmune reaction against CASQ1 in the thyroid

    The tumor suppressor MIR139 is silenced by POLR2M to promote AML oncogenesis

    Get PDF
    MIR139 is a tumor suppressor and is commonly silenced in acute myeloid leukemia (AML). However, the tumor-suppressing activities of miR-139 and molecular mechanisms of MIR139-silencing remain largely unknown. Here, we studied the poorly prognostic MLL-AF9 fusion protein-expressing AML. We show that MLL-AF9 expression in hematopoietic precursors caused epigenetic silencing of MIR139, whereas overexpression of MIR139 inhibited in vitro and in vivo AML outgrowth. We identified novel miR-139 targets that mediate the tumor-suppressing activities of miR-139 in MLL-AF9 AML. We revealed that two enhancer regions control MIR139 expression and found that the polycomb repressive complex 2 (PRC2) downstream of MLL-AF9 epigenetically silenced MIR139 in AML. Finally, a genome-wide CRISPR-Cas9 knockout screen revealed RNA Polymerase 2 Subunit M (POLR2M) as a novel MIR139-regulatory factor. Our findings elucidate the molecular control of tumor suppressor MIR139 and reveal a role for POLR2M in the MIR139-silencing mechanism, downstream of MLL-AF9 and PRC2 in AML. In addition, we confirmed these findings in human AML cell lines with different oncogenic aberrations, suggesting that this is a more common oncogenic mechanism in AML. Our results may pave the way for new targeted therapy in AML.Proteomic

    Comparison of outcome and characteristics between 6343 COVID-19 patients and 2256 other community-acquired viral pneumonia patients admitted to Dutch ICUs

    Get PDF
    Purpose: Describe the differences in characteristics and outcomes between COVID-19 and other viral pneumonia patients admitted to Dutch ICUs. Materials and methods: Data from the National-Intensive-Care-Evaluation-registry of COVID-19 patients admitted between February 15th and January 1th 2021 and other viral pneumonia patients admitted between January 1st 2017 and January 1st 2020 were used. Patients' characteristics, the unadjusted, and adjusted in-hospital mortality were compared. Results: 6343 COVID-19 and 2256 other viral pneumonia patients from 79 ICUs were included. The COVID-19 patients included more male (71.3 vs 49.8%), had a higher Body-Mass-Index (28.1 vs 25.5), less comorbidities (42.2 vs 72.7%), and a prolonged hospital length of stay (19 vs 9 days). The COVID-19 patients had a significantly higher crude in-hospital mortality rate (Odds ratio (OR) = 1.80), after adjustment for patient characteristics and ICU occupancy rate the OR was respectively 3.62 and 3.58. Conclusion: Higher mortality among COVID-19 patients could not be explained by patient characteristics and higher ICU occupancy rates, indicating that COVID-19 is more severe compared to other viral pneumonia. Our findings confirm earlier warnings of a high need of ICU capacity and high mortality rates among relatively healthy COVID-19 patients as this may lead to a higher mental workload for the staff. (c) 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/)

    Inulin-type fructans modulate intestinal Bifidobacterium species populations and decrease fecal short-chain fatty acids in obese women

    No full text
    Background & aims : Inulin-type fructans (ITF) prebiotics promote changes in the composition and activity of the gut microbiota. The aim of this study was to determine variations on fecal short chain fatty acids (SCFA) concentration in obese women treated with ITF and to explore associations between Bifidobacterium species, SCFA and host biological markers of metabolism. Methods Samples were obtained in a randomized, double blind, parallel, placebo-controlled trial, with 30 obese women randomly assigned to groups that received either 16 g/day ITF (n = 15) or maltodextrin (n = 15) for 3 months. The qualitative and quantitative analysis of Bifidobacterium spp. was performed in feces by PCR-DGGE and q-PCR, and SCFA profile was analyzed by gas chromatography. Spearman correlation analysis was performed between the different variables analyzed. Results The species Bifidobacterium longum, Bifidobacterium pseudocatenulatum and Bifidobacterium adolescentis were significantly increased at the end of the treatment in the prebiotic group (p <0.01) with being B. longum negatively correlated with serum lipopolysaccharide (LPS) endotoxin (p <0.01). Total SCFA, acetate and propionate, that positively correlated with BMI, fasting insulinemia and homeostasis model assessment (HOMA) (p <0.05), were significantly lower in prebiotic than in placebo group after the treatment period. Conclusions ITF consumption selectively modulates Bifidobacterium spp. and decreases fecal SCFA concentration in obese women. ITF could lessen metabolic risk factors associated with higher fecal SCFA concentration in obese individuals

    Recurrent FXYD2 p.Gly41Arg mutation in patients with isolated dominant hypomagnesaemia

    No full text
    Contains fulltext : 153826.pdf (publisher's version ) (Closed access)BACKGROUND: Magnesium (Mg(2+)) is an essential ion for cell growth, neuroplasticity and muscle contraction. Blood Mg(2+) levels <0.7 mmol/L may cause a heterogeneous clinical phenotype, including muscle cramps and epilepsy and disturbances in K(+) and Ca(2+) homeostasis. Over the last decade, the genetic origin of several familial forms of hypomagnesaemia has been found. In 2000, mutations in FXYD2, encoding the gamma-subunit of the Na(+)-K(+)-ATPase, were identified to cause isolated dominant hypomagnesaemia (IDH) in a large Dutch family suffering from hypomagnesaemia, hypocalciuria and chondrocalcinosis. However, no additional patients have been identified since then. METHODS: Here, two families with hypomagnesaemia and hypocalciuria were screened for mutations in the FXYD2 gene. Moreover, the patients were clinically and genetically characterized. RESULTS: We report a p.Gly41Arg FXYD2 mutation in two families with hypomagnesaemia and hypocalciuria. Interestingly, this is the same mutation as was described in the original study. As in the initial family, several patients suffered from muscle cramps, chondrocalcinosis and epilepsy. Haplotype analysis revealed an overlapping haplotype in all families, suggesting a founder effect. CONCLUSIONS: The recurrent p.Gly41Arg FXYD2 mutation in two new families with IDH confirms that FXYD2 mutation causes hypomagnesaemia. Until now, no other FXYD2 mutations have been reported which could indicate that other FXYD2 mutations will not cause hypomagnesaemia or are embryonically lethal

    GUT MICROBIOTA IS IMPLICATED IN CANCER-INDUCED CACHEXIA

    No full text
    BACKGROUND AND AIMS : We know that the gut microbiota is implicated in energy metabolism and it role has been mostly studied upon obesity . Here we set the hypothesis that the gut microbiota could also be implicated in metabolic alterations associated with cancer, cachexia. METHODS : This hypothesis was assessed in BALB/c mice intravenously injected with mouse proB BAF3 cells transfected with BCR-ABL gene in order to allow the development of chronic myelogenous leukemia (CML). Muscles (tibialis, gastrocnemius), liver, intestine and adipose tissues were withdrawn 2 weeks after injection for further biochemical and histological analysis. Gut microbiota composition was assessed by RT-qPCR. RESULTS : BCR-ABL expressing CML constitutes a new model of cancer cachexia, as proven by a decrease in adipose and muscle tissue weights. In both male and female, Lactobacillus spp. levels in caecal content drastically decrease, independently of food intake (p<0,001). Moreover, this decrease is highly correlated to muscle markers of atrophy, such as Atrogin-1 mRNA (r = -0,8885, p<0,0001). Finally, increasing the level of Lactobacillus spp. levels by dietary prebiotics allows to lessen Atrogin-1 mRNA induction in the muscle. CONCLUSIONS : In this new model of cancer cachexia, we highlight two important facts : first, gut microbiota modification is associated with cancer-induced cachexia ; second, modulation of gut microbiota counteracts markers of muscle atrophy. Therefore, we suggest that gut microbiota is implicated in cancer cachexia and may constitute a new target in the treatment of this metabolic disease

    Decontamination of the digestive tract and oropharynx in ICU patients.

    Get PDF
    Contains fulltext : 79996.pdf (publisher's version ) (Open Access)BACKGROUND: Selective digestive tract decontamination (SDD) and selective oropharyngeal decontamination (SOD) are infection-prevention measures used in the treatment of some patients in intensive care, but reported effects on patient outcome are conflicting. METHODS: We evaluated the effectiveness of SDD and SOD in a crossover study using cluster randomization in 13 intensive care units (ICUs), all in The Netherlands. Patients with an expected duration of intubation of more than 48 hours or an expected ICU stay of more than 72 hours were eligible. In each ICU, three regimens (SDD, SOD, and standard care) were applied in random order over the course of 6 months. Mortality at day 28 was the primary end point. SDD consisted of 4 days of intravenous cefotaxime and topical application of tobramycin, colistin, and amphotericin B in the oropharynx and stomach. SOD consisted of oropharyngeal application only of the same antibiotics. Monthly point-prevalence studies were performed to analyze antibiotic resistance. RESULTS: A total of 5939 patients were enrolled in the study, with 1990 assigned to standard care, 1904 to SOD, and 2045 to SDD; crude mortality in the groups at day 28 was 27.5%, 26.6%, and 26.9%, respectively. In a random-effects logistic-regression model with age, sex, Acute Physiology and Chronic Health Evaluation (APACHE II) score, intubation status, and medical specialty used as covariates, odds ratios for death at day 28 in the SOD and SDD groups, as compared with the standard-care group, were 0.86 (95% confidence interval [CI], 0.74 to 0.99) and 0.83 (95% CI, 0.72 to 0.97), respectively. CONCLUSIONS: In an ICU population in which the mortality rate associated with standard care was 27.5% at day 28, the rate was reduced by an estimated 3.5 percentage points with SDD and by 2.9 percentage points with SOD. (Controlled Clinical Trials number, ISRCTN35176830.
    corecore