65 research outputs found
Reclamation status of a degraded pasture based on soil health indicators
Pasture degradation is a concern, especially in susceptible sandy soils for which strategies to recover them must be developed. Microbiological and biochemical soil health indicators are useful in the guindace of soil management practices and sustainable soil use. We assessed the success of threePanicum maximum Jacq. cultivars in the reclamation of a pasture in a sandy Typic Acrudox in the northwest of the state of Paranå, Brazil, based on soil health indicators. On a formerly degraded pasture withUrochloa brizantha (Hochst. ex A. Rich.) R.D. Webster, a trial with threeP. maximum (cv. Massai, Tanzùnia, or Mombaça) was conducted. Lime and phosphate were applied at set-up, and mineral N and K as topdressing. A remnant of degraded pasture adjacent to the trial was used as control. Twenty-three chemical, physical, microbiological and biochemical attributes were assessed for the 0-10 cm topsoil. The procedures for reclamation improved most of the indicators of soil health in relation to the degraded pasture, such as soil P, mineral N, microbial biomass C, ammonification rate, dehydrogenase activity and acid phosphatase. CO2 evolution decreased, whereas microbial biomass C increased in the pasture under reclamation, resulting in a lower metabolic quotient (qCO2) that points to a decrease in metabolic stress of the microbial community. The reclamation of the pasture withP. maximum, especially cv. Mombaça, were evidenced by improvements in the microbiological and biochemical soil health indicators, showing a recovery of processes related to C, N and P cycling in the soil
Advances in Global and Local Helioseismology: an Introductory Review
Helioseismology studies the structure and dynamics of the Sun's interior by
observing oscillations on the surface. These studies provide information about
the physical processes that control the evolution and magnetic activity of the
Sun. In recent years, helioseismology has made substantial progress towards the
understanding of the physics of solar oscillations and the physical processes
inside the Sun, thanks to observational, theoretical and modeling efforts. In
addition to the global seismology of the Sun based on measurements of global
oscillation modes, a new field of local helioseismology, which studies
oscillation travel times and local frequency shifts, has been developed. It is
capable of providing 3D images of the subsurface structures and flows. The
basic principles, recent advances and perspectives of global and local
helioseismology are reviewed in this article.Comment: 86 pages, 46 figures; "Pulsation of the Sun and Stars", Lecture Notes
in Physics, Vol. 832, Rozelot, Jean-Pierre; Neiner, Coralie (Eds.), 201
New insights into the genetic etiology of Alzheimer's disease and related dementias.
Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE Δ4 allele
New insights into the genetic etiology of Alzheimer's disease and related dementias
Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE Δ4 allele
The effect of temperature on the hardness of polycrystalline cubic boron nitride cutting tool materials
Polycrystalline cubic boron nitride (PcBN) cutting tools are used for the machining of ferrous alloys at high speeds and temperatures where the use of diamond is precluded due to graphitisation. To accurately predict the life of these tool materials it is necessary to understand inter alia the deformation and relevant mechanisms that occur at the temperatures and pressures associated with cutting. This paper uses Vickers indentation as a means of assessing the role of cBN content, binder phase and cBN grain size on the mechanical properties of a number of polycrystalline cubic boron nitride materials. It will be shown that as experimental temperatures increase, a change in deformation mechanism occurs in the tool materials, confirming that the indentation method is useful in the identification of such changes
- âŠ