27 research outputs found

    Development of Ni-free Mn-stabilised maraging steels using Fe2SiTi precipitates

    Get PDF
    Computational alloy design has been used to develop a new maraging steel system with low cost, using Mn for austenite reversion and Heusler Fe2SiTi nm-scale precipitates to strengthen the martensite, avoiding high cost alloying elements such as Ni and Co. A pronounced ageing response was obtained, of over 100 HV, associated with the formation of 2-30nm Fe2SiTi precipitates alongside the development of 10% Mn rich austenite, at the martensite boundaries with the Kurdjumov-Sachs orientation relationship. The precipitates took on different orientation relationships, depending on the size scale and ageing time, with fine precipitates possessing an L21//α orientation relationship, compared to larger precipitates with L21//α. Computational alloy design has been used for the development and demonstration of an alloy design concept having multiple constraints. Whilst in this case computational design lacked the fidelity to completely replace experimental optimisation, it identifies the importance of embedding Thermodynamic and kinetic modelling within each experimental iteration, and vice versa, training the model between experimental iterations. In this approach, the model would guide targeted experiments, the experimental results would then be taken into future modelling to greatly accelerate the rate of alloy development

    Predicting microstructure and strength of maraging steels: Elemental optimisation

    Get PDF
    A physics–based modelling framework to describe microstructure and mechanical properties in maraging steels is presented. It is based on prescribing the hierarchical structure of the martensitic matrix, including dislocation density, and lath and high–angle grain boundary spacing. The evolution of lath–shaped reverted austenite is described using grain–boundary diffusion laws within a lath unit. The dislocation density provides the preferential nucleation sites for precipitation, whereas descriptions for particle nucleation, growth and coarsening evolution are identified for Ni 3 Ti, NiAl and its variants, and BCC–Cu clusters. These results are combined to describe the hardness at different ageing temperatures in several [Formula presented], [Formula presented] and [Formula presented] steels. A critical assessment on individual contributions of typical alloying elements is performed. Ni and Mn control the kinetics of austenite formation, where the latter shows stronger influence on the growth kinetics. Ti additions induce higher hardness by precipitating stronger Ni 3 Ti, whereas Cu clusters induce low strength. A relationship between the reverted austenite and the total elongation in overaging conditions is also found. This result allows to identify optimal process and alloy design scenarios to improve the ductility whilst preserving high hardness in commercial maraging steels

    On the Effect of Nb on the Microstructure and Properties of Next Generation Polycrystalline Powder Metallurgy Ni-Based Superalloys

    Get PDF
    Abstract The effect of Nb on the properties and microstructure of two novel powder metallurgy (P/M) Ni-based superalloys was evaluated, and the results critically compared with the Rolls-Royce alloy RR1000. The Nb-containing alloy was found to exhibit improved tensile and creep properties as well as superior oxidation resistance compared with both RR1000 and the Nb-free variant tested. The beneficial effect of Nb on the tensile and creep properties was due to the microstructures obtained following the post-solution heat treatments, which led to a higher γ′ volume fraction and a finer tertiary γ′ distribution. In addition, an increase in the anti-phase-boundary energy of the γ′ phase is also expected with the addition of Nb, further contributing to the strength of the material. However, these modifications in the γ′ distribution detrimentally affect the dwell fatigue crack-growth behavior of the material, although this behavior can be improved through modified heat treatments. The oxidation resistance of the Nb-containing alloy was also enhanced as Nb is believed to accelerate the formation of a defect-free Cr2O3 scale. Overall, both developmental alloys, with and without the addition of Nb, were found to exhibit superior properties than RR1000.This work was supported by the Rolls-Royce/EPSRC Strategic Partnership under EP/H022309/1, EP/H500375/1 and EP/ M005607/1

    Gamma Prime Precipitate Evolution During Aging of a Model Nickel-Based Superalloy

    Get PDF
    The microstructural stability of nickel-based superalloys is critical for maintaining alloy performance during service in gas turbine engines. In this study, the precipitate evolution in a model polycrystalline Ni-based superalloy during aging to 1000 hours has been studied via transmission electron microscopy, atom probe tomography and neutron diffraction. Variations in phase composition and precipitate morphology, size and volume fraction were observed during aging, whilst the constrained lattice misfit remained constant at approximately zero. The experimental composition of the γ matrix phase was consistent with thermodynamic equilibrium predictions, whilst significant differences were identified between the experimental and predicted results from the γʹ phase. These results have implications for the evolution of mechanical properties in service and their prediction using modeling methods.The authors wish to acknowledge Mrs. S. Rhodes, Dr. H.T. Pang, Dr. D.M. Collins, and Dr. O.M.D.M. Messé for their assistance with the experiments performed. Funding was provided by the EPSRC/Rolls-Royce Strategic Partnership under EP/M005607/1 and EP/H022309/1. The Oxford Atom Probe facility was funded by the EPSRC under EP/M022803/1. Neutron diffraction beam time was supported through the Canadian Neutron Beam Centre under Experiment number 1258

    Thermostatistical theory of plastic deformation in metals

    No full text
    This work aims to describe plastic deformation and microstructure evolution of metals at various scales in terms of dislocation behaviour. The theory is based on statistical thermodynamics, where the entropy is proposed to incorporate the possible paths for dislocation motion. Other than estimating the velocity gradients a dislocation may reach, the number of possible paths (configurations) that are favourable in terms of free energy at a given temperature and strain rate are considered in the entropy. It is demonstrated that the entropy features strongly in plasticity: 1) Its description supplies a physical foundation to the Kocks–Mecking formulation across the scales at a variety of deformation conditions for FCC, BCC and HCP metals, by identifying the activation energy for dislocation annihilation. 2) The transitions from low, medium and high temperature dislocation annihilation mechanisms are physically explained. 3) It aids in describing the conditions for the formation of dislocation cells and their average size, as well as the work hardening behaviour at large strains in FCC and BCC metals. 4) Deformation twinning in HCP, FCC and nano–twinned copper can be described. 5) The transition tempera- tures where different twin modes predominate in HCP metals are predicted. 6) The dynamic recrystallisation behaviour in pure and multicomponent FCC systems can be described; the critical conditions for recrystallisation occurrence are obtained in terms of alloy’s composition and deformation parameters. 7) Solid solution effects in work hardening can be identified. All these results allow to describe various plasticity phenomena in terms of a single parameter: the average dislocation density.Materials Science and EngineeringMechanical, Maritime and Materials Engineerin

    Quantification of hydrogen trapping in multiphase steels:Part II – Effect of austenite morphology

    No full text
    We tackle the role of austenite in multiphase steels on hydrogen diffusion systematically for the first time, considering a range of factors such as morphology, interface kinetics and the additional effect of point traps using both experiments and modelling. This follows the findings from part I where we showed that austenite cannot be parametrised and modelled as point traps under the assumption of local equilibrium, unlike grain boundaries and dislocations. To solve this, we introduce a 2D hydrogen diffusion model accounting for the difference in diffusivities and solubilities between the phases. We first revisit the as-quenched martensite permeation results from part I and show that the extremely low H diffusivity there can be partly explained with the new description of austenite but is partly likely due to quench vacancies. We then also look at the H absorption and desorption rates in a duplex steel as a case study using a combination of simulations and experiments. The rates are shown to depend heavily on austenite morphology and the kinetics of H transition from ferrite to austenite and that an energy barrier is likely associated to this transition. We show that H diffusion through the ferrite matrix and austenite islands proceeds at similar rates and the assumption of negligible concentration gradients in ferrite occasionally applied in the literature is a poor approximation. This approach is also applicable to other austenite-containing steels as well as other multiphase alloys

    Quantification of hydrogen trapping in multiphase steels:Part I – Point traps in martensite

    No full text
    We quantified systematically the H trap density in martensite resulting from the presence of dislocations, grain boundaries and retained austenite through a combination of detailed microstructural characterisation, H permeation, thermal desorption and diffusion modelling. This thorough analysis allowed for the first time to deconvolve key microstructural constituents affecting H diffusion in multi-trap martensite. Three microstructures were investigated – as-quenched, tempered at 300 °C and tempered at 450 °C. The first two microstructures had identical dislocation densities and grain size, while the as-quenched one also contained 3.5 vol.% of retained austenite. The two tempered microstructures showed a large difference in dislocation density with few other microstructural differences. The as-quenched microstructure exhibited over an order of magnitude lower H diffusivity and increased H trapping due to retained austenite, while the tempered samples exhibited very similar diffusivities, indicating that dislocations have a limited effect on H trapping. Trap density scaling laws were successfully identified and validated through diffusion simulations and experiments. It was also shown that in martensite and heavily deformed ferrite, where the average grain size is small, grain boundaries are more effective trapping sites than dislocations. Our results also show that retained austenite cannot be effectively modelled as a point trap under the local equilibrium assumption, which is frequently used to model its effect on H diffusion, and that bulk trapping must be considered at least in two dimensions, which is addressed in part II of this series. © 2020 Acta Materialia Inc
    corecore