333 research outputs found
Frustration effects in magnetic molecules
Besides being a fascinating class of new materials, magnetic molecules
provide the opportunity to study concepts of condensed matter physics in zero
dimensions. This contribution will exemplify the impact of molecular magnetism
on concepts of frustrated spin systems. We will discuss spin rings and the
unexpected rules that govern their low-energy behavior. Rotational bands, which
are experimentally observed in various molecular magnets, provide a useful,
simplified framework for characterizing the energy spectrum, but there are also
deviations thereof with far-reaching consequences. It will be shown that
localized independent magnons on certain frustrated spin systems lead to giant
magnetization jumps, a new macroscopic quantum effect. In addition a
frustration-induced metamagnetic phase transitions will be discussed, which
demonstrates that hysteresis can exist without anisotropy. Finally, it is
demonstrated that frustrated magnetic molecules could give rise to an enhanced
magnetocaloric effect.Comment: 6 pages, 4 figures; submitted to J. Low. Temp. Phys.; proceedings of
the Sixth International Symposium on Crystalline Organic Metals,
Superconductors, and Ferromagnets (ISCOM
Density Matrix Functional Calculations for Matter in Strong Magnetic Fields: I. Atomic Properties
We report on a numerical study of the density matrix functional introduced by
Lieb, Solovej and Yngvason for the investigation of heavy atoms in high
magnetic fields. This functional describes {\em exactly} the quantum mechanical
ground state of atoms and ions in the limit when the nuclear charge and the
electron number tend to infinity with fixed, and the magnetic field
tends to infinity in such a way that . We have
calculated electronic density profiles and ground state energies for values of
the parameters that prevail on neutron star surfaces and compared them with
results obtained by other methods. For iron at G the ground state
energy differs by less than 2 \% from the Hartree-Fock value. We have also
studied the maximal negative ionization of heavy atoms in this model at various
field strengths. In contrast to Thomas-Fermi type theories atoms can bind
excess negative charge in the density matrix model. For iron at G
the maximal excess charge in this model corresponds to about one electron.Comment: Revtex, 13 pages with 6 eps figures include
Symmetry Properties on Magnetization in the Hubbard Model at Finite Temperatures
By making use of some symmetry properties of the relevant Hamiltonian, two
fundamental relations between the ferromagnetic magnetization and a spin
correlation function are derived for the -dimensional Hubbard model
at finite temperatures. These can be viewed as a kind of Ward-Takahashi
identities. The properties of the magnetization as a function of the applied
field are discussed. The results thus obtained hold true for both repulsive and
attractive on-site Coulomb interactions, and for arbitrary electron fillings.Comment: Latex file, no figur
Impact of long-range interactions on the disordered vortex lattice
The interaction between the vortex lines in a type-II superconductor is
mediated by currents. In the absence of transverse screening this interaction
is long-ranged, stiffening up the vortex lattice as expressed by the dispersive
elastic moduli. The effect of disorder is strongly reduced, resulting in a
mean-squared displacement correlator =
characterized by a mere logarithmic growth with distance. Finite screening cuts
the interaction on the scale of the London penetration depth \lambda and limits
the above behavior to distances R<\lambda. Using a functional renormalization
group (RG) approach, we derive the flow equation for the disorder correlation
function and calculate the disorder-averaged mean-squared relative displacement
\propto ln^{2\sigma} (R/a_0). The logarithmic growth (2\sigma=1) in
the perturbative regime at small distances [A.I. Larkin and Yu.N. Ovchinnikov,
J. Low Temp. Phys. 34, 409 (1979)] crosses over to a sub-logarithmic growth
with 2\sigma=0.348 at large distances.Comment: 9 pages, no figure
Generalized hole-particle transformations and spin reflection positivity in multi-orbital systems
We propose a scheme combining spin reflection positivity and generalized
hole-particle and orbital transformations to characterize the symmetry
properties of the ground state for some correlated electron models on bipartite
lattices. In particular, we rigorously determine at half-filling and for
different regions of the parameter space the spin, orbital and pairing
pseudospin of the ground state of generalized two-orbital Hubbard models which
include the Hund's rule coupling.Comment: 6 pages, 2 figure
Aspects of radiative K^+_e3 decays
We re-investigate the radiative charged kaon decay K+- --> pi0 e+- nu_e gamma
in chiral perturbation theory, merging the chiral expansion with Low's theorem.
We thoroughly analyze the precision of the predicted branching ratio relative
to the non-radiative decay channel. Structure dependent terms and their impact
on differential decay distributions are investigated in detail, and the
possibility to see effects of the chiral anomaly in this decay channel is
emphasized.Comment: 15 pages, 6 figure
Magnetic and Dynamic Properties of the Hubbard Model in Infinite Dimensions
An essentially exact solution of the infinite dimensional Hubbard model is
made possible by using a self-consistent mapping of the Hubbard model in this
limit to an effective single impurity Anderson model. Solving the latter with
quantum Monte Carlo procedures enables us to obtain exact results for the one
and two-particle properties of the infinite dimensional Hubbard model. In
particular we find antiferromagnetism and a pseudogap in the single-particle
density of states for sufficiently large values of the intrasite Coulomb
interaction at half filling. Both the antiferromagnetic phase and the
insulating phase above the N\'eel temperature are found to be quickly
suppressed on doping. The latter is replaced by a heavy electron metal with a
quasiparticle mass strongly dependent on doping as soon as . At half
filling the antiferromagnetic phase boundary agrees surprisingly well in shape
and order of magnitude with results for the three dimensional Hubbard model.Comment: 32 page
Phase diagrams of spin ladders with ferromagnetic legs
The low-temperature properties of the spin S=1/2 ladder with anisotropic
ferromagnetic legs are studied using the continuum limit bosonization approach.
The weak-coupling ground state phase diagram of the model is obtained for a
wide range of coupling constants and several unconventional gapless
''spin-liquid'' phases are shown to exist for ferromagnetic coupling. The
behavior of the ladder system in the vicinity of the ferromagnetic instability
point is discussed in detail.Comment: 11 pages, 4 figure
Symmetry breaking in the Hubbard model at weak coupling
The phase diagram of the Hubbard model is studied at weak coupling in two and
three spatial dimensions. It is shown that the Neel temperature and the order
parameter in d=3 are smaller than the Hartree-Fock predictions by a factor of
q=0.2599. For d=2 we show that the self-consistent (sc) perturbation series
bears no relevance to the behavior of the exact solution of the Hubbard model
in the symmetry-broken phase. We also investigate an anisotropic model and show
that the coupling between planes is essential for the validity of
mean-field-type order parameters
Persistent Currents in Small, Imperfect Hubbard Rings
We have done a study with small, imperfect Hubbard rings with exact
diagonalization. The results for few-electron rings show, that the
imperfection, whether localized or not, nearly always decrease, but can also
\emph{increase} the persistent current, depending on the character of the
imperfection and the on-site interaction. The calculations are generally in
agreement with more specialized studies. In most cases the electron spin plays
an important role.Comment: 6 pages, 4 figure
- …