70 research outputs found

    Detection of Gravitational Redshift on the Solar Disk by Using Iodine-Cell Technique

    Full text link
    With an aim to examine whether the predicted solar gravitational redshift can be observationally confirmed under the influence of the convective Doppler shift due to granular motions, we attempted measuring the absolute spectral line-shifts on a large number of points over the solar disk based on an extensive set of 5188-5212A region spectra taken through an iodine-cell with the Solar Domeless Telescope at Hida Observatory. The resulting heliocentric line shifts at the meridian line (where no rotational shift exists), which were derived by finding the best-fit parameterized model spectrum with the observed spectrum and corrected for the earth's motion, turned out to be weakly position-dependent as ~ +400 m/s near the disk center and increasing toward the limb up to ~ +600 m/s (both with a standard deviation of sigma ~ 100 m/s). Interestingly, this trend tends to disappear when the convectiveshift due to granular motions (~-300 m/s at the disk center and increasing toward the limb; simulated based on the two-component model along with the empirical center-to-limb variation) is subtracted, finally resulting in the averaged shift of 698 m/s (sigma = 113 m/s). Considering the ambiguities involved in the absolute wavelength calibration or in the correction due to convective Doppler shifts (at least several tens m/s, or more likely up to <~100 m/s), we may regard that this value is well consistent with the expected gravitational redshift of 633 m/s.Comment: 28 pages, 12 figures, electronic materials as ancillary data (table3, table 4, ReadMe); accepted for publication in Solar Physic

    Review on Current Sheets in CME Development: Theories and Observations

    Get PDF

    Large-Eddy Simulations of Magnetohydrodynamic Turbulence in Heliophysics and Astrophysics

    Get PDF
    We live in an age in which high-performance computing is transforming the way we do science. Previously intractable problems are now becoming accessible by means of increasingly realistic numerical simulations. One of the most enduring and most challenging of these problems is turbulence. Yet, despite these advances, the extreme parameter regimes encountered in space physics and astrophysics (as in atmospheric and oceanic physics) still preclude direct numerical simulation. Numerical models must take a Large Eddy Simulation (LES) approach, explicitly computing only a fraction of the active dynamical scales. The success of such an approach hinges on how well the model can represent the subgrid-scales (SGS) that are not explicitly resolved. In addition to the parameter regime, heliophysical and astrophysical applications must also face an equally daunting challenge: magnetism. The presence of magnetic fields in a turbulent, electrically conducting fluid flow can dramatically alter the coupling between large and small scales, with potentially profound implications for LES/SGS modeling. In this review article, we summarize the state of the art in LES modeling of turbulent magnetohydrodynamic (MHD) ows. After discussing the nature of MHD turbulence and the small-scale processes that give rise to energy dissipation, plasma heating, and magnetic reconnection, we consider how these processes may best be captured within an LES/SGS framework. We then consider several special applications in heliophysics and astrophysics, assessing triumphs, challenges,and future directions

    Modelling Quasi-Periodic Pulsations in Solar and Stellar Flares

    Full text link
    corecore