8 research outputs found

    Molecular diagnostics for the Sigatoka disease complex of banana

    No full text
    The Sigatoka disease complex of banana involves three related ascomycetous fungi, Mycosphaerella fijiensis, M. musicola, and M. eumusae. The exact distribution of these three species and their disease epidemiology remain unclear, because their symptoms and life cycles are rather similar. Disease diagnosis in the Mycosphaerella complex of banana is based on the presence of host symptoms and fungal fruiting structures, which hamper preventive management strategies. In the present study, we have developed rapid and robust species-specific molecular-based diagnostic tools for detection and quantification of M. fijiensis, M. musicola, and M. eumusae. Conventional species-specific polymerase chain reaction (PCR) primers were developed based on the actin gene that detected DNA at as little as 100, 1, and 10 pg/¿l from M. fijiensis, M. musicola, and M. eumusae, respectively. Furthermore, TaqMan real-time quantitative PCR assays were developed based on the ß-tubulin gene and detected quantities of DNA as low as 1 pg/¿l for each Mycosphaerella sp. from pure cultures and DNA at 1.6 pg/¿l per milligram of dry leaf tissue for M. fijiensis that was validated using naturally infected banana leave

    Isolation and characterization of the mating type locus of Mycosphaerella fijiensis, the causal agent of black leaf streak disease of banana

    No full text
    Idiomorphs mat1-1 and mat1-2 from Mycosphaerella fijiensis, the causal agent of black leaf streak disease of banana, were isolated. Degenerate oligos were used to amplify the HMG box of the mat1-2 idiomorph from M. fijiensis, showing homology with the HMG box of Mycosphaerella graminicola. Using a DNA walking strategy, anchored on the DNA lyase gene towards the HMG box, a 9-kb-long region of mat1-2 was obtained. A 5-kb fragment from the mat1-1 region was obtained by long-range PCR using primers on the flanking regions, which have close to 100% identity between both idiomorphs. High-identity (77¿89%), inverted regions within both idiomorphs were found, which suggest unique inversion events, which have not been found before, and that could have been significant in the evolution of this species. The predicted genes showed the conserved introns in both idiomorphs as well as an additional intron within the alpha box. The implications for the evolution of species in the Mycosphaerella complex on banana are discussed.

    Collimonas fungivorans gen. nov., sp. nov., a chitinolytic soil bacterium with the ability to grow on living fungal hyphae

    No full text
    A polyphasic approach was used to describe the phylogenetic position of 22 chitinolytic bacterial isolates that were able to grow at the expense of intact, living hyphae of several soil fungi. These isolates, which were found in slightly acidic dune soils in the Netherlands, were strictly aerobic, Gram-negative rods. Cells grown in liquid cultures were flagellated and possessed pili. A wide range of sugars, alcohols, organic acids and amino acids could be metabolized, whereas several di- and trisaccharides could not be used as substrates. The major cellular fatty acids were C16 : 0, C16 : 17c and C18 : 17c. DNA G+C contents were 57–62 mol%. Analysis of nearly full-length 16S rDNA sequences showed that the isolates were related closely to each other (>98·6 % sequence similarity) and could be assigned to the -Proteobacteria, family ‘Oxalobacteraceae’, order ‘Burkholderiales’. The most closely related species belonged to the genera Herbaspirillum and Janthinobacterium, exhibiting 95·9–96·7 % (Herbaspirillum species) and 94·3–95·6 % (Janthinobacterium species) 16S rDNA sequence similarity to the isolates. Several physiological and biochemical properties indicated that the isolates could be distinguished clearly from both of these genera. Therefore, it is proposed that the isolates described in this study are representatives of a novel genus, Collimonas gen. nov. Genomic fingerprinting (BOX-PCR), detailed analysis of 16S rDNA patterns and physiological characterization (Biolog) of the isolates revealed the existence of four subclusters. The name Collimonas fungivorans gen. nov., sp. nov. has been given to one subcluster (four isolates) that appears to be in the centre of the novel genus; isolates in the other subclusters have been tentatively named Collimonas sp. The type strain of Collimonas fungivorans gen. nov., sp. nov. is Ter6T (=NCCB 100033T=LMG 21973T).

    Multiple gene genealogies and phenotypic characters differentiate several novel species of Mycosphaerella and related anamorphs on banana

    Get PDF
    Three species of Mycosphaerella, namely M. eumusae, M. fijiensis, and M. musicola are involved in the Sigatoka disease complex of bananas. Besides these three primary pathogens, several additional species of Mycosphaerella or their anamorphs have been described from Musa. However, very little is known about these taxa, and for the majority of these species no culture or DNA is available for study. In the present study, we collected a global set of Mycosphaerella strains from banana, and compared them by means of morphology and a multi-gene nucleotide sequence data set. The phylogeny inferred from the ITS region and the combined data set containing partial gene sequences of the actin gene, the small subunit mitochondrial ribosomal DNA and the histone H3 gene revealed a rich diversity of Mycosphaerella species on Musa. Integration of morphological and molecular data sets confirmed more than 20 species of Mycosphaerella (incl. anamorphs) to occur on banana. This study reconfirmed the previously described presence of Cercospora apii, M. citri and M. thailandica, and also identified Mycosphaerella communis, M. lateralis and Passalora loranthi on this host. Moreover, eight new species identified from Musa are described, namely Dissoconium musae, Mycosphaerella mozambica, Pseudocercospora assamensis, P. indonesiana, P. longispora, Stenella musae, S. musicola, and S. queenslandica

    Application of microsatellite PCR techniques in the identification of mixed up tissue specimens in surgical pathology

    No full text
    A fragment of tumour was erroneously mixed up with an endometrial biopsy. Microsatellite polymerase chain reaction (PCR) clearly demonstrated the extraneous nature of the fragment. Microsatellite PCR may be useful for the identification of mislabelled or mismatched tissue fragments in surgical pathology specimens. Key Words: mislabelled tissue • mixed up specimens • microsatellite PC

    Epithelial-mesenchymal transitions in human cancer

    No full text
    corecore