19 research outputs found

    On the Global Existence of Bohmian Mechanics

    Get PDF
    We show that the particle motion in Bohmian mechanics, given by the solution of an ordinary differential equation, exists globally: For a large class of potentials the singularities of the velocity field and infinity will not be reached in finite time for typical initial values. A substantial part of the analysis is based on the probabilistic significance of the quantum flux. We elucidate the connection between the conditions necessary for global existence and the self-adjointness of the Schr\"odinger Hamiltonian.Comment: 35 pages, LaTe

    Long-Time Behavior of Macroscopic Quantum Systems: Commentary Accompanying the English Translation of John von Neumann's 1929 Article on the Quantum Ergodic Theorem

    Full text link
    The renewed interest in the foundations of quantum statistical mechanics in recent years has led us to study John von Neumann's 1929 article on the quantum ergodic theorem. We have found this almost forgotten article, which until now has been available only in German, to be a treasure chest, and to be much misunderstood. In it, von Neumann studied the long-time behavior of macroscopic quantum systems. While one of the two theorems announced in his title, the one he calls the "quantum H-theorem", is actually a much weaker statement than Boltzmann's classical H-theorem, the other theorem, which he calls the "quantum ergodic theorem", is a beautiful and very non-trivial result. It expresses a fact we call "normal typicality" and can be summarized as follows: For a "typical" finite family of commuting macroscopic observables, every initial wave function ψ0\psi_0 from a micro-canonical energy shell so evolves that for most times tt in the long run, the joint probability distribution of these observables obtained from ψt\psi_t is close to their micro-canonical distribution.Comment: 34 pages LaTeX, no figures; v2: minor improvements and additions. The English translation of von Neumann's article is available as arXiv:1003.213

    On the verge of Umdeutung in Minnesota: Van Vleck and the correspondence principle (Part One)

    Get PDF
    In October 1924, the Physical Review, a relatively minor journal at the time, published a remarkable two-part paper by John H. Van Vleck, working in virtual isolation at the University of Minnesota. Van Vleck combined advanced techniques of classical mechanics with Bohr's correspondence principle and Einstein's quantum theory of radiation to find quantum analogues of classical expressions for the emission, absorption, and dispersion of radiation. For modern readers Van Vleck's paper is much easier to follow than the famous paper by Kramers and Heisenberg on dispersion theory, which covers similar terrain and is widely credited to have led directly to Heisenberg's "Umdeutung" paper. This makes Van Vleck's paper extremely valuable for the reconstruction of the genesis of matrix mechanics. It also makes it tempting to ask why Van Vleck did not take the next step and develop matrix mechanics himself.Comment: 82 page
    corecore