21 research outputs found

    Tradeoffs in demographic mechanisms underlie differences in species abundance and stability

    Get PDF
    Understanding why some species are common and others are rare is a central question in ecology, and is critical for developing conservation strategies under global change. Rare species are typically considered to be more prone to extinction—but the fact they are rare can impede a general understanding of rarity vs. abundance. Here we develop and empirically test a framework to predict species abundances and stability using mechanisms governing population dynamics. Our results demonstrate that coexisting species with similar abundances can be shaped by different mechanisms (specifically, higher growth rates when rare vs. weaker negative density-dependence). Further, these dynamics influence population stability: species with higher intrinsic growth rates but stronger negative density-dependence were more stable and less sensitive to climate variability, regardless of abundance. This suggests that underlying mechanisms governing population dynamics, in addition to population size, may be critical indicators of population stability in an increasingly variable world

    Managing the whole landscape: historical, hybrid, and novel ecosystems

    Get PDF
    The reality confronting ecosystem managers today is one of heterogeneous, rapidly transforming landscapes, particularly in the areas more affected by urban and agricultural development. A landscape management framework that incorporates all systems, across the spectrum of degrees of alteration, provides a fuller set of options for how and when to intervene, uses limited resources more effectively, and increases the chances of achieving management goals. That many ecosystems have departed so substantially from their historical trajectory that they defy conventional restoration is not in dispute. Acknowledging novel ecosystems need not constitute a threat to existing policy and management approaches. Rather, the development of an integrated approach to management interventions can provide options that are in tune with the current reality of rapid ecosystem change

    Biotic mechanisms of community stability shift along a precipitation gradient

    Get PDF
    Understanding how biotic mechanisms confer stability in variable environments is a fundamental quest in ecology, and one that is becoming increasingly urgent with global change. Several mechanisms, notably a portfolio effect associated with species richness, compensatory dynamics generated by negative species covariance and selection for stable dominant species populations can increase the stability of the overall community. While the importance of these mechanisms is debated, few studies have contrasted their importance in an environmental context. We analyzed nine long-term datasets of grassland species composition to investigate how two key environmental factors - precipitation amount and variability - may directly influence community stability and how they may indirectly influence stability via biotic mechanisms. We found that the importance of stability mechanisms varied along the environmental gradient: strong negative species covariance occurred in sites characterized by high precipitation variability, whereas portfolio effects increased in sites with high mean annual precipitation. Instead of questioning whether compensatory dynamics are important in nature, our findings suggest that debate should widen to include several stability mechanisms and how these mechanisms vary in importance across environmental gradients
    corecore