12 research outputs found

    Inotuzumab ozogamicin in pediatric patients with relapsed/refractory acute lymphoblastic leukemia

    Get PDF
    Although inotuzumab ozogamicin (InO) is recognized as an effective agent in relapsed acute lymphoblastic leukemia (ALL) in adults, data on safety and efficacy in pediatric patients are scarce. We report the use of InO in 51 children with relapsed/ refractory ALL treated in the compassionate use program. In this heavily pretreated cohort, complete remission was achieved in 67% of patients with overt marrow disease. The majority (71%) of responders were negative for minimal residual disease. Responses were observed irrespective of cytogenetic subtype or number or type of prior treatment regimens. InO was welltolerated; grade 3 hepatic transaminitis or hyperbilirubinemia were noted in 6 (12%) and grade 3/4 infections in 11 (22%) patients. No patient developed sinusoidal obstruction syndrome (SOS) during InO therapy; however, 11 of 21 (52%) patients who underwent hematopoietic stem cell transplantation (HSCT) following InO developed SOS. Downregulation of surface CD22 was detected as a possible escape mechanism in three patients who developed a subsequent relapse after InO. We conclude that InO is a well-tolerated, effective therapy for children with relapsed ALL and prospective studies are warranted. Identification of risk factors for developing post-HSCT SOS and strategies to mitigate this risk are ongoing

    A comprehensive classification system for lipids

    No full text
    Lipids are produced, transported, and recognized by the concerted actions of numerous enzymes, binding proteins, and receptors. A comprehensive analysis of lipid molecules, “lipidomics,” in the context of genomics and proteomics is crucial to understanding cellular physiology and pathology; consequently, lipid biology has become a major research target of the postgenomic revolution and systems biology. To facilitate international communication about lipids, a comprehensive classification of lipids with a common platform that is compatible with informatics requirements has been developed to deal with the massive amounts of data that will be generated by our lipid community. As an initial step in this development, we divide lipids into eight categories (fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterol lipids, prenol lipids, saccharolipids, and polyketides) containing distinct classes and subclasses of molecules, devise a common manner of representing the chemical structures of individual lipids and their derivatives, and provide a 12 digit identifier for each unique lipid molecule. The lipid classification scheme is chemically based and driven by the distinct hydrophobic and hydrophilic elements that compose the lipid. This structured vocabulary will facilitate the systematization of lipid biology and enable the cataloging of lipids and their properties in a way that is compatible with other macromolecular databases

    Toxicity assessment of molecularly targeted drugs incorporated into multiagent chemotherapy regimens for pediatric Acute Lymphocytic Leukemia (ALL): Review from an International Consensus Conference

    No full text
    One of the challenges of incorporating molecularly targeted drugs into multi-agent chemotherapy (backbone) regimens is defining dose-limiting toxicities (DLTs) of the targeted agent against the background of toxicities of the backbone regimen. An international panel of 22 pediatric acute lymphocytic leukemia (ALL) experts addressed this issue (www.ALLNA.org). Two major questions surrounding DLT assessment were explored: (1) how toxicities can be best defined, assessed, and attributed; and (2) how effective dosing of new agents incorporated into multi-agent ALL clinical trials can be safely established in the face of disease- and therapy-related systemic toxicities. The consensus DLT definition incorporates tolerance of resolving Grade 3 and some resolving Grade 4 toxicities with stringent safety monitoring. This functional DLT definition is being tested in two Children's Oncology Group (COG) ALL clinical trials

    PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia

    No full text
    Recent genomic studies have identified chromosomal rearrangements defining new subtypes of B-progenitor acute lymphoblastic leukemia (B-ALL), however many cases lack a known initiating genetic alteration. Using integrated genomic analysis of 1,988 childhood and adult cases, we describe a revised taxonomy of B-ALL incorporating 23 subtypes defined by chromosomal rearrangements, sequence mutations or heterogeneous genomic alterations, many of which show marked variation in prevalence according to age. Two subtypes have frequent alterations of the B lymphoid transcription-factor gene PAX5. One, PAX5alt (7.4%), has diverse PAX5 alterations (rearrangements, intragenic amplifications or mutations); a second subtype is defined by PAX5 p.Pro80Arg and biallelic PAX5 alterations. We show that p.Pro80Arg impairs B lymphoid development and promotes the development of B-ALL with biallelic Pax5 alteration in vivo. These results demonstrate the utility of transcriptome sequencing to classify B-ALL and reinforce the central role of PAX5 as a checkpoint in B lymphoid maturation and leukemogenesis

    Structures and Motifs Involved in Toll Signaling

    No full text
    corecore