21 research outputs found

    Screening-based discovery of <em>Aspergillus fumigatus </em>plant-type chitinase inhibitors

    Get PDF
    AbstractA limited therapeutic arsenal against increasing clinical disease due to Aspergillus spp. necessitates urgent characterisation of new antifungal targets. Here we describe the discovery of novel, low micromolar chemical inhibitors of Aspergillus fumigatus family 18 plant-type chitinase A1 (AfChiA1) by high-throughput screening (HTS). Analysis of the binding mode by X-ray crystallography confirmed competitive inhibition and kinetic studies revealed two compounds with selectivity towards fungal plant-type chitinases. These inhibitors provide new chemical tools to probe the effects of chitinase inhibition on A. fumigatus growth and virulence, presenting attractive starting points for the development of further potent drug-like molecules

    Mechanical Properties and Microstructural Characterization of Aged Nickel-based Alloy 625 Weld Metal

    Get PDF
    The aim of this work was to evaluate the different phases formed during solidification and after thermal aging of the as-welded 625 nickel-based alloy, as well as the influence of microstructural changes on the mechanical properties. The experiments addressed aging temperatures of 650 and 950 A degrees C for 10, 100, and 200 hours. The samples were analyzed by electron microscopy, microanalysis, and X-ray diffraction in order to identify the secondary phases. Mechanical tests such as hardness, microhardness, and Charpy-V impact test were performed. Nondestructive ultrasonic inspection was also conducted to correlate the acquired signals with mechanical and microstructural properties. The results show that the alloy under study experienced microstructural changes when aged at 650 A degrees C. The aging was responsible by the dissolution of the Laves phase formed during the solidification and the appearance of gamma aEuro(3) phase within interdendritic region and fine carbides along the solidification grain boundaries. However, when it was aged at 950 A degrees C, the Laves phase was continuously dissolved and the excess Nb caused the precipitation of the delta-phase (Ni3Nb), which was intensified at 10 hours of aging, with subsequent dissolution for longer periods such as 200 hours. Even when subjected to significant microstructural changes, the mechanical properties, especially toughness, were not sensitive to the dissolution and/or precipitation of the secondary phases

    From neuroscience to evidence based psychological treatments - The promise and the challenge, ECNP March 2016, Nice, France

    No full text
    This ECNP meeting was designed to build bridges between different constituencies of mental illness treatment researchers from a range of backgrounds with a specific focus on enhancing the development of novel, evidence based, psychological treatments. In particular we wished to explore the potential for basic neuroscience to support the development of more effective psychological treatments, just as this approach is starting to illuminate the actions of drugs. To fulfil this aim, a selection of clinical psychologists, psychiatrists and neuroscientists were invited to sit at the same table. The starting point of the meeting was the proposition that we know certain psychological treatments work, but we have only an approximate understanding of why they work. The first task in developing a coherent mental health science would therefore be to uncover the mechanisms (at all levels of analysis) of effective psychological treatments. Delineating these mechanisms, a task that will require input from both the clinic and the laboratory, will provide a key foundation for the rational optimisation of psychological treatments. As reviewed in this paper, the speakers at the meeting reviewed recent advances in the understanding of clinical and cognitive psychology, neuroscience, experimental psychopathology, and treatment delivery technology focussed primarily on anxiety disorders and depression. We started by asking three rhetorical questions: What has psychology done for treatment? What has technology done for psychology? What has neuroscience done for psychology? We then addressed how research in five broad research areas could inform the future development of better treatments: Attention, Conditioning, Compulsions and addiction, Emotional Memory, and Reward and emotional bias. Research in all these areas (and more) can be harnessed to neuroscience since psychological therapies are a learning process with a biological basis in the brain. Because current treatment approaches are not fully satisfactory, there is an imperative to understand why not. And when psychological therapies do work we need to understand why this is the case, and how we can improve them. We may be able to improve accessibility to treatment without understanding mechanisms. But for treatment innovation and improvement, mechanistic insights may actually help. Applying neuroscience in this way will become an additional mission for ECNP
    corecore