79 research outputs found

    Tree-body loss of of trapped ultracold 87^{87}Rb atoms due to a Feshbach resonance

    Full text link
    The loss of ultracold trapped atoms in the vicinity of a Feshbach resonance is treated as a two-stage reaction, using the Breit-Wigner theory. The first stage is the formation of a resonant diatomic molecule, and the second one is its deactivation by inelastic collisions with other atoms. This model is applied to the analysis of recent experiments on 87^{87}Rb, leading to an estimated value of 7×10117\times 10^{-11} cm3/^{3}/s for the deactivation rate coefficient.Comment: LaTeX, 4 pages with 1 figures, uses REVTeX4, uses improved experimental dat

    Bose-Einstein condensate collapse: a comparison between theory and experiment

    Full text link
    We solve the Gross-Pitaevskii equation numerically for the collapse induced by a switch from positive to negative scattering lengths. We compare our results with experiments performed at JILA with Bose-Einstein condensates of Rb-85, in which the scattering length was controlled using a Feshbach resonance. Building on previous theoretical work we identify quantitative differences between the predictions of mean-field theory and the results of the experiments. Besides the previously reported difference between the predicted and observed critical atom number for collapse, we also find that the predicted collapse times systematically exceed those observed experimentally. Quantum field effects, such as fragmentation, that might account for these discrepancies are discussed.Comment: 4 pages, 2 figure

    Very high precision bound state spectroscopy near a 85^{85}Rb Feshbach resonance

    Get PDF
    We precisely measured the binding energy of a molecular state near the Feshbach resonance in a 85^{85}Rb Bose-Einstein condensate (BEC). Rapid magnetic field pulses induced coherent atom-molecule oscillations in the BEC. We measured the oscillation frequency as a function of B-field and fit the data to a coupled-channels model. Our analysis constrained the Feshbach resonance position [155.041(18) G], width [10.71(2) G], and background scattering length [-443(3) a0_0] and yielded new values for vDSv_{DS}, vDTv_{DT}, and C6C_6. These results improved our estimate for the stability condition of an attractive BEC. We also found evidence for a mean-field shift to the binding energy.Comment: 5 pages, 2 figures, submitted to PR

    Characterization of elastic scattering near a Feshbach resonance in rubidium 87

    Full text link
    The s-wave scattering length for elastic collisions between 87Rb atoms in the state |f,m_f>=|1,1> is measured in the vicinity of a Feshbach resonance near 1007 G. Experimentally, the scattering length is determined from the mean-field driven expansion of a Bose-Einstein condensate in a homogeneous magnetic field. The scattering length is measured as a function of the magnetic field and agrees with the theoretical expectation. The position and the width of the resonance are determined to be 1007.40 G and 0.20 G, respectively.Comment: 4 pages, 2 figures minor revisions: added Ref.6, included error bar

    Dynamic depletion in a Bose condensate via a sudden increase of the scattering length

    Full text link
    We examine the time-dependent quantum depletion of a trapped Bose condensate arising from a rapid increase of the scattering length. Our solution indicates that a significant buildup of incoherent atoms can occur within a characteristic time short compared with the harmonic trap period. We discuss how the depletion density and the characteristic time depend on the physical parameters of the condensate

    Hydrodynamic modes of a 1D trapped Bose gas

    Full text link
    We consider two regimes where a trapped Bose gas behaves as a one-dimensional system. In the first one the Bose gas is microscopically described by 3D mean field theory, but the trap is so elongated that it behaves as a 1D gas with respect to low frequency collective modes. In the second regime we assume that the 1D gas is truly 1D and that it is properly described by the Lieb-Liniger model. In both regimes we find the frequency of the lowest compressional mode by solving the hydrodynamic equations. This is done by making use of a method which allows to find analytical or quasi-analytical solutions of these equations for a large class of models approaching very closely the actual equation of state of the Bose gas. We find an excellent agreement with the recent results of Menotti and Stringari obtained from a sum rule approach.Comment: 15 pages, revtex, 1 figure

    A sharp condition for scattering of the radial 3d cubic nonlinear Schroedinger equation

    Full text link
    We consider the problem of identifying sharp criteria under which radial H1H^1 (finite energy) solutions to the focusing 3d cubic nonlinear Schr\"odinger equation (NLS) itu+Δu+u2u=0i\partial_t u + \Delta u + |u|^2u=0 scatter, i.e. approach the solution to a linear Schr\"odinger equation as t±t\to \pm \infty. The criteria is expressed in terms of the scale-invariant quantities u0L2u0L2\|u_0\|_{L^2}\|\nabla u_0\|_{L^2} and M[u]E[u]M[u]E[u], where u0u_0 denotes the initial data, and M[u]M[u] and E[u]E[u] denote the (conserved in time) mass and energy of the corresponding solution u(t)u(t). The focusing NLS possesses a soliton solution eitQ(x)e^{it}Q(x), where QQ is the ground-state solution to a nonlinear elliptic equation, and we prove that if M[u]E[u]<M[Q]E[Q]M[u]E[u]<M[Q]E[Q] and u0L2u0L2<QL2QL2\|u_0\|_{L^2}\|\nabla u_0\|_{L^2} < \|Q\|_{L^2}\|\nabla Q\|_{L^2}, then the solution u(t)u(t) is globally well-posed and scatters. This condition is sharp in the sense that the soliton solution eitQ(x)e^{it}Q(x), for which equality in these conditions is obtained, is global but does not scatter. We further show that if M[u]E[u]QL2QL2M[u]E[u] \|Q\|_{L^2}\|\nabla Q\|_{L^2}, then the solution blows-up in finite time. The technique employed is parallel to that employed by Kenig-Merle \cite{KM06a} in their study of the energy-critical NLS

    Weakly bound atomic trimers in ultracold traps

    Full text link
    The experimental three-atom recombination coefficients of the atomic states 23^{23}NaF=1,mF=1>|F=1,m_F=-1>, 87^{87}RbF=1,mF=1>|F=1,m_F=-1> and 85^{85}RbF=2,mF=2>|F=2,m_F=-2>, together with the corresponding two-body scattering lengths, allow predictions of the trimer bound state energies for such systems in a trap. The recombination parameter is given as a function of the weakly bound trimer energies, which are in the interval 1<m(a/)2E3<6.9 1<m(a/\hbar)^2 E_3< 6.9 for large positive scattering lengths, aa. The contribution of a deep-bound state to our prediction, in the case of 85^{85}RbF=2,mF=2>|F=2,m_F=-2>, for a particular trap, is shown to be relatively small.Comment: 5 pages, 1 figur

    Dynamics of quantum quenching for BCS-BEC systems in the shallow BEC regime

    Full text link
    The problem of coupled Fermi-Bose mixtures of an ultracold gas near a narrow Feshbach resonance is approached through the time-dependent and complex Ginzburg-Landau (TDGL) theory. The dynamical system is constructed using Ginzburg-Landau-Abrikosov-Gor'kov (GLAG) path integral methods with the single mode approximation for the composite Bosons, and the equilibrium states are obtained in the BEC regime for adiabatic variations of the Feshbach detuning along the stationary solutions of the dynamical system. Investigations into the rich superfluid dynamics of this system in the shallow BEC regime yields the onset of multiple interference patterns in the dynamics as the system is quenched from the deep-BEC regime. This results in a partial collapse and revival of the coherent matter wave field of the BEC, whose temporal profile is reported.Comment: 24 pages, 7 figures. Submitted to European Journal of Physics Plu

    An ansatz for the nonlinear Demkov-Kunike problem for cold molecule formation

    Full text link
    We study nonlinear mean-field dynamics of ultracold molecule formation in the case when the external field configuration is defined by the level-crossing Demkov-Kunike model, characterized by a bell-shaped coupling and finite variation of the detuning. Analyzing the fast sweep rate regime of the strong interaction limit, which models a situation when the peak value of the coupling is large enough and the resonance crossing is sufficiently fast, we construct a highly accurate ansatz to describe the temporal dynamics of the molecule formation in the mentioned interaction regime. The absolute error of the constructed approximation is less than 3*10^-6 for the final transition probability while at certain time points it might increase up to 10^-3. Examining the role of the different terms in the constructed approximation, we prove that in the fast sweep rate regime of the strong interaction limit the temporal dynamics of the atom-molecule conversion effectively consists of the process of resonance crossing, which is governed by a nonlinear equation, followed by atom-molecular coherent oscillations which are basically described by a solution of the linear problem, associated with the considered nonlinear one.Comment: Accepted for publication in J. Contemp. Phys. (Armenian National Academy of Sciences) 8 pages, 4 figure
    corecore