10 research outputs found

    Tudásmenedzsment és a felsőoktatási intézmény, mint vállalat = Knowledge Management and the University as a Company

    Get PDF
    Purpose: ALK rearrangement detection using FISH is the standard test to identify patients with non–small cell lung carcinoma (NSCLC) eligible for treatment with ALK inhibitors. Recently, ALK protein expression in resectable NSCLC showed predictive value. We evaluated tumor response rate and survival after crizotinib treatment of patients with advanced NSCLC with ALK activation using both dichotomous immunohistochemical (IHC) staining and FISH. Experimental Design: Patients with stage IV NSCLC treated with crizotinib were selected. Tumor response was assessed. ALK rearrangements were detected by FISH (Vysis ALK-break-apart FISH-Probe KIT) and IHC [Ventana ALK (D5F3) CDx assay]. Cohorts of patients with ALK-FISH–positive advanced NSCLC from four other hospitals were used for validation. Results: Twenty-nine consecutive patients with ALK-positive advanced NSCLC diagnosed by FISH and/or IHC on small biopsies or fine-needle aspirations (FNA) were treated with ALK inhibitors. All ALK-IHC–positive patients responded to crizotinib except three with primary resistance. No tumor response was observed in 13 ALK-FISH–positive but ALK-IHC–negative patients. This was confirmed in an external cohort of 16 patients. Receiver operator characteristic (ROC) curves for ALK-IHC and ALK-FISH compared with treatment outcome showed that dichotomous ALK-IHC outperforms ALK-FISH [tumor response area under the curve: (AUC), 0.86 vs. 0.64, P ¼ 0.03; progression-free survival (PFS): AUC 0.86 vs. 0.36, P ¼ 0.005; overall survival (OS): AUC, 0.78 vs. 0.41, P ¼ 0.01, respectively]. Conclusions: Dichotomous ALK-IHC is superior to ALK-FISH on small biopsies and FNA to predict tumor response and survival to crizotinib for patients with advanced NSCLC. Our data strongly suggest adapting the guidelines and using dichotomous ALK-IHC as standard companion diagnostic test to select patients with NSCLC who benefit from ALK-targeting therapy

    Chromosome instability predicts progression of premalignant lesions of the larynx

    No full text
    The histopathology of premalignant laryngeal lesions does not provide reliable information on the risk of malignant transformation, hence we examined new molecular markers which can easily be implemented in clinical practice.Dual-target fluorescence in situ hybridisation (FISH) for chromosome 1 and 7 centromeres was performed on tissue sections of laryngeal premalignancies in 69 patients. Chromosome instability was indicated by numerical imbalances and/or polysomy for chromosomes 1 and 7. Additionally, immunostainings for p53, Cyclin D1 and (p)FADD expression were evaluated. Malignant progression was recorded. Eighteen patients with carcinoma in situ (CIS) were treated after diagnosis and excluded from follow-up.Chromosome instability was strongly associated with a high risk of malignant transformation, especially in lower grade lesions (hyperplasia, mild and moderate dysplasia; odds ratio=8.4, p=0.004). Patients with lesions containing chromosome instability showed a significantly worse 5-year progression-free survival than those with premalignancies without chromosome instability (p=0.002). Neither histopathology nor the protein markers predicted progression in univariate analysis, although histopathological diagnosis, p53 and FADD contributed positively to chromosome instability in multivariate analysis.Chromosome instability is associated with malignant progression of laryngeal premalignancies, especially in lower grade lesions. These results may contribute to better risk counselling, provided that they can be validated in a larger patient set

    Prevalence and prognostic value of PD-L1 expression in molecular subtypes of metastatic large cell neuroendocrine carcinoma (LCNEC)

    Get PDF
    Background: Pulmonary large cell neuroendocrine carcinoma (LCNEC) is a rare tumor with high mutational burden. Two subtypes of LCNEC are recognized, the co-mutated TP53 and RB1 group and the TP53 and STK11/KEAP1 group. We investigated PD-L1 and CD8 expression in a well characterized stage IV LCNEC cohort and compared expression in the two subtypes. Methods: Immunohistochemical (IHC) analysis for PD-L1 and CD8 was performed on pathological reviewed pretreatment tumor samples for 148 stage IV LCNEC. Data about targeted next generation sequencing (TNGS) (TP53, RB1, STK11, KEAP1) and IHC for RB1 were available for most tumors. IHC staining for PD-L1 (DAKO 28-8) was performed and scored positive if tumors showed ≥1% membranous staining. CD8 was scored for intra-tumor T-cells and stromal cells. Results: PD-L1 IHC expression data could be generated in 98/148 confirmed LCNEC samples along with RB1 IHC (n = 97) of which 77 passed quality control for TNGS. PD-L1 expression was positive in 16/98 cases (16%); 5 (5%) with ≥50%. PD-L1 expression was equal in RB1 mutated and RB1 wildtype tumors. None of STK11 mutated tumors (n = 7) expressed PD-L1. PD-L1 expression was correlated with superior overall survival (OS), hazard ratio 0.55 ((95% Confidence Interval 0.31-0.96), p = 0.038). Intra-tumor CD8 was associated with PD-L1 expression (p = 0.021) and stromal and intra-tumor CD8 were correlated with improved OS (p = 0.037 and p = 0.026 respectively). Conclusions: PD-L1 expression was positive in 16% of stage IV LCNEC tumors. This was independent of molecular subtype but associated with CD8 expression. In LCNEC patients with PD-L1 and/or CD8 expression superior OS was observed

    Evaluation of NGS and RT-PCR Methods for ALK Rearrangement in European NSCLC Patients: Results from the European Thoracic Oncology Platform Lungscape Project

    No full text
    Introduction: The reported prevalence of ALK receptor tyrosine kinase gene (ALK) rearrangement in NSCLC ranges from 2% to 7%. The primary standard diagnostic method is fluorescence in situ hybridization (FISH). Recently, immunohistochemistry (IHC) has also proved to be a reproducible and sensitive technique. Reverse-transcriptase polymerase chain reaction (RT-PCR) has also been advocated, and most recently, the advent of targeted next-generation sequencing (NGS) for ALK and other fusions has become possible. This study compares anaplastic lymphoma kinase (ALK) evaluation with all four techniques in resected NSCLC from the large European Thoracic Oncology Platform Lungscape cohort. Methods: A total of 96 cases from the European Thoracic Oncology Platform Lungscape iBiobank, with any ALK immunoreactivity were examined by FISH, central RT-PCR, and NGS. An H-score higher than 120 defines IHC positivity. RNA was extracted from the same formalin-fixed, paraffin-embedded tissues. For RT-PCR, primers covered the most frequent ALK translocations. For NGS, the Oncomine Solid Tumour Fusion Transcript Kit (Thermo Fisher Scientific, Waltham, MA) was used. The concordance was assessed using the Cohen κ coefficient (two-sided α ≤ 5%). Results: NGS provided results for 77 of the 95 cases tested (81.1%), whereas RT-PCR provided results for 77 of 96 (80.2%). Concordance occurred in 55 cases of the 60 cases tested with all four methods (43 ALK negative and 12 ALK positive). Using ALK copositivity for IHC and FISH as the criterion standard, we derived a sensitivity for RT-PCR/NGS of 70.0%/85.0%, with a specificity of 87.1%/79.0%. When either RT-PCR or NGS was combined with IHC, the sensitivity remained the same, whereas the specificity increased to 88.7% and 83.9% respectively. Conclusion: NGS evaluation with the Oncomine Solid Tumour Fusion transcript kit and RT-PCR proved to have high sensitivity and specificity, advocating their use in routine practice. For maximal sensitivity and specificity, ALK status should be assessed by using two techniques and a third one in discordant cases. We therefore propose a customizable testing algorithm. These findings significantly influence existing testing paradigms and have clear clinical and economic impact. © 2017 International Association for the Study of Lung Cance

    A retrospective cohort study of PD-L1 prevalence, molecular associations and clinical outcomes in patients with NSCLC: Results from the European Thoracic Oncology Platform (ETOP) Lungscape Project

    No full text
    Introduction: The PD-L1 biomarker is an important factor in selecting patients with non-small cell lung cancer for immunotherapy. While several reports suggest that PD-L1 positivity is linked to a poor prognosis, others suggest that PD-L1 positive status portends a good prognosis. Methods: PD-L1 positivity prevalence, assessed via immunohistochemistry (IHC) on tissue microarrays (TMAs), and its association with clinicopathological characteristics, molecular profiles and patient outcome- Relapse-free Survival (RFS), Time-to-Relapse (TTR) and Overall Survival (OS)- is explored in the ETOP Lungscape cohort of stage I-III non-small cell lung cancer (NSCLC). Tumors are considered positive if they have ≥1/5/25/50% neoplastic cell membrane staining. Results: PD-L1 expression was assessed in 2182 NSCLC cases (2008 evaluable, median follow-up 4.8 years, 54.6% still alive), from 15 ETOP centers. Adenocarcinomas represent 50.9% of the cohort (squamous cell: 42.4%). Former smokers are 53.7% (current: 31.6%, never: 10.5%). PD-L1 positivity prevalence is present in more than one third of the Lungscape cohort (1%/5% cut-offs). It doesn't differ between adenocarcinomas and squamous cell histologies, but is more frequently detected in higher stages, never smokers, larger tumors (1/5/25% cut-offs). With ≥1% cut-off it is significantly associated with IHC MET overexpression, expression of PTEN, EGFR and KRAS mutation (only for adenocarcinoma). Results for 5%, 25% and 50% cut-offs were similar, with MET being significantly associated with PD-L1 positivity both for AC (p < 0.001, 5%/25%/50% cut-offs) and SCC (p < 0.001, 5% & 50% cut-offs and p = 0.0017 for 25%). When adjusting for clinicopathological characteristics, a significant prognostic effect was identified in adenocarcinomas (adjusted p-values: 0.024/0.064/0.063 for RFS/TTR/OS 1% cut-off, analogous for 5%/25%, but not for 50%). Similar results obtained for the model including all histologies, but no effect was found for the squamous cell carcinomas. Conclusion: PD-L1 positivity, when adjusted for clinicopathological characteristics, is associated with a better prognosis for non-metastatic adenocarcinoma patients. © 2019 Elsevier B.V

    Molecular subtypes of pulmonary large-cell neuroendocrine carcinoma predict chemotherapy treatment outcome

    No full text
    Purpose:Previous genomic studies have identified two mutually exclusive molecular subtypes of large-cell neuroendocrine carcinoma (LCNEC): the RB1 mutated (mostly comutated with TP53) and the RB1 wild-type groups. We assessed whether these subtypes have a predictive value on chemotherapy outcome. Experimental Design: Clinical data and tumor specimens were retrospectively obtained from Netherlands Cancer Registry and Pathology Registry. Panel-consensus pathology revision confirmed the diagnosis of LCNEC in 148 of 232 cases. Next-generation sequencing (NGS) for TP53, RB1, STK11, and KEAP1 genes, as well as IHC for RB1 and P16 was performed on 79 and 109 cases, respectively, and correlated with overall survival (OS) and progression-free survival (PFS), stratifying for non-small cell lung cancer type chemotherapy including platinum + gemcitabine or taxanes (NSCLC-GEM/TAX) and platinum-etoposide (SCLC-PE). Results: RB1 mutation and protein loss were detected in 47% (n = 37) and 72% (n = 78) of the cases, respectively. Patients with RB1 wild-type LCNEC treated with NSCLC-GEM/TAX had a significantly longer OS [9.6; 95% confidence interval (CI), 7.7-11.6 months] than those treated with SCLC-PE [5.8 (5.5-6.1); P = 0.026]. Similar results were obtained for patients expressing RB1 in their tumors (P = 0.001). RB1 staining or P16 loss showed similar results. The same outcome for chemotherapy treatment was observed in LCNEC tumors harboring an RB1 mutation or lost RB1 protein. Conclusions: Patients with LCNEC tumors that carry a wild-type RB1 gene or express the RB1 protein do better with NSCLC-GEM/TAX treatment than with SCLC-PE chemotherapy. However, no difference was observed for RB1 mutated or with lost protein expression.</p

    Multicenter Comparison of Molecular Tumor Boards in The Netherlands: Definition, Composition, Methods, and Targeted Therapy Recommendations

    Get PDF
    Background: Molecular tumor boards (MTBs) provide rational, genomics-driven, patient-tailored treatment recommendations. Worldwide, MTBs differ in terms of scope, composition, methods, and recommendations. This study aimed to assess differences in methods and agreement in treatment recommendations among MTBs from tertiary cancer referral centers in The Netherlands. Materials and Methods: MTBs from all tertiary cancer referral centers in The Netherlands were invited to participate. A survey assessing scope, value, logistics, composition, decision-making method, reporting, and registration of the MTBs was completed through on-site interviews with members from each MTB. Targeted therapy recommendations were compared using 10 anonymized cases. Participating MTBs were asked to provide a treatment recommendation in accordance with their own methods. Agreement was based on which molecular alteration(s) was considered actionable with the next line of targeted therapy. Results: Interviews with 24 members of eight MTBs revealed that all participating MTBs focused on rare or complex mutational cancer profiles, operated independently of cancer type–specific multidisciplinary teams, and consisted of at least (thoracic and/or medical) oncologists, pathologists, and clinical scientists in molecular pathology. Differences were the types of cancer discussed and the methods used to achieve a recommendation. Nevertheless, agreement among MTB recommendations, based on identified actionable molecular alteration(s), was high for the 10 evaluated cases (86%). Conclusion: MTBs associated with tertiary cancer referral centers in The Netherlands are similar in setup and reach a high agreement in recommendations for rare or complex mutational cancer profiles. We propose a “Dutch MTB model” for an optimal, collaborative, and nationally aligned MTB workflow. Implications for Practice: Interpretation of genomic analyses for optimal choice of target therapy for patients with cancer is becoming increasingly complex. A molecular tumor board (MTB) supports oncologists in rationalizing therapy options. However, there is no consensus on the most optimal setup for an MTB, which can affect the quality of recommendations. This study reveals that the eight MTBs associated with tertiary cancer referral centers in The Netherlands are similar in setup and reach a high agreement in recommendations for rare or complex mutational profiles. The Dutch MTB model is based on a collaborative and nationally aligned workflow with interinstitutional collaboration and data sharing

    Programmed death-ligand 1 expression influenced by tissue sample size. Scoring based on tissue microarrays’ and cross-validation with resections, in patients with, stage I–III, non-small cell lung carcinoma of the European Thoracic Oncology Platform Lungscape cohort

    No full text
    PD-L1, as assessed by immunohistochemistry, is a predictive biomarker for immuno-oncology treatment in lung cancer. Different scoring methods have been used to assess its status, resulting in a wide range of positivity rates. We use the European Thoracic Oncology Platform Lungscape non-small cell lung carcinoma cohort to explore this issue. PD-L1 expression was assessed via immunohistochemistry on tissue microarrays (up to four cores per case), using the DAKO 28-8 immunohistochemistry assay, following a two-round external quality assessment procedure. All samples were analyzed under the same protocol. Cross-validation of scoring between tissue microarray and whole sections was performed in 10% randomly selected samples. Cutoff points considered: ≥1, 50 (primarily), and 25%. At the two external quality assessment rounds, tissue microarray scoring agreement rates between pathologists were: 73% and 81%. There were 2008 cases with valid immunohistochemistry tissue microarray results (50% all cores evaluable). Concordant cases at 1, 25, and 50% were: 85, 91, and 93%. Tissue microarray core results were identical for 70% of cases. Sensitivity of the tissue microarray method for 1, 25, and 50% was: 80, 78, and 79% (specificity: 90, 95, 98%). Complete agreement between tissue microarrays and whole sections was achieved for 60% of the cases. Highest sensitivity rates for 1% and 50% cutoffs were detected for higher number of cores. Underestimation of PD-L1 expression on small samples is more common than overestimation. We demonstrated that classification of PD-L1 on small biopsy samples does not represent the overall expression of PD-L1 in all non-small cell cancer carcinoma cases, although the majority of cases are ‘correctly’ classified. In future studies, sampling more and larger biopsies, recording the biopsy size and tumor load may permit further refinement, increasing predictive accuracy. © 2019, The Author(s), under exclusive licence to United States &amp; Canadian Academy of Pathology
    corecore