7 research outputs found

    Modeling of Small Sea Floaters in the Central Mediterranean Sea: Seasonality of At--Sea Distributions

    Get PDF
    Floating marine debris represent a threat to marine and coastal ecology. Since the Mediterranean basin is one of the highly impacted regions, both by the coastal pollution as well as from sea traffic, the potential harm of a floating pollution on the marine ecology could be overwhelming in this area. Our study area covers the central Mediterranean crossing that connects the western and eastern Mediterranean and is one of the areas impacted by a high intensity of sea traffic. To identify regions in the central Mediterranean that could be more exposed by high concentration of floating marine pollutants we use Leeway model for lower windage small-size particles. We perform numerical simulation of a large ensemble of Lagrangian particles that approximate at-sea debris. The particles are forced by high-resolution sea kinematics from the Copernicus Marine Environment Monitoring Service (CMEMS) and 10 m atmospheric wind from the European Centre for Medium-Range Weather Forecasts (ECMWF) for two reference periods in summer and winter of 2013-2016. We identify the regions with a high accumulation of particles in terms of particle surface densities per unit area. Although seasonal and annual variability of ocean current and atmospheric wind is an important factor that influences accumulation regimes across the central Mediterranean, we found that the border of the Libyan shelf harbors larger percentage of particles after 30 days of simulation.

    Effect of periodic parametric excitation on an ensemble of force-coupled self-oscillators

    Full text link
    We report the synchronization behavior in a one-dimensional chain of identical limit cycle oscillators coupled to a mass-spring load via a force relation. We consider the effect of periodic parametric modulation on the final synchronization states of the system. Two types of external parametric excitations are investigated numerically: periodic modulation of the stiffness of the inertial oscillator and periodic excitation of the frequency of the self-oscillatory element. We show that the synchronization scenarios are ruled not only by the choice of parameters of the excitation force but depend on the initial collective state in the ensemble. We give detailed analysis of entrainment behavior for initially homogeneous and inhomogeneous states. Among other results, we describe a regime of partial synchronization. This regime is characterized by the frequency of collective oscillation being entrained to the stimulation frequency but different from the average individual oscillators frequency.Comment: Comments and suggestions are welcom

    A new search-and-rescue service in the Mediterranean Sea: a demonstration of the operational capability and an evaluation of its performance using real case scenarios

    Get PDF
    Abstract. A new web-based and mobile decision support system (DSS) for search-and-rescue (SAR) at sea is presented, and its performance is evaluated using real case scenarios. The system, named OCEAN-SAR, is accessible via the website http://www.ocean-sar.com. In addition to the website, dedicated applications for iOS and Android have been created to optimise the user experience on mobile devices. OCEAN-SAR simulates drifting objects at sea, using as input ocean currents and wind data provided, respectively, by the CMEMS and ECMWF. The modelling of the drifting objects is based on the leeway model, which parameterises the wind drag of an object using a series of coefficients. These coefficients have been measured in field experiments for different types of objects, ranging from a person in the water to a coastal freighter adrift. OCEAN-SAR provides the user with an intuitive interface to run simulations and to visualise their results using Google Maps. The performance of the service is evaluated by comparing simulations to data from the Italian Coast Guard pertaining to actual incidents in the Mediterranean Sea

    Phase Coherence Analysis of Insect Flight

    Full text link
    This paper has been withdrawn by the author due to a errors in figure 3,4Comment: This paper has been withdraw

    A new search-and-rescue service in the Mediterranean Sea: A demonstration of the operational capability and an evaluation of its performance using real case scenarios

    No full text
    A new web-based and mobile decision support system (DSS) for search-and-rescue (SAR) at sea is presented, and its performance is evaluated using real case scenarios. The system, named OCEAN-SAR, is accessible via the website http://www.ocean-sar.com. In addition to the website, dedicated applications for iOS and Android have been created to optimise the user experience on mobile devices. OCEAN-SAR simulates drifting objects at sea, using as input ocean currents and wind data provided, respectively, by the CMEMS and ECMWF. The modelling of the drifting objects is based on the leeway model, which parameterises the wind drag of an object using a series of coefficients. These coefficients have been measured in field experiments for different types of objects, ranging from a person in the water to a coastal freighter adrift. OCEAN-SAR provides the user with an intuitive interface to run simulations and to visualise their results using Google Maps. The performance of the service is evaluated by comparing simulations to data from the Italian Coast Guard pertaining to actual incidents in the Mediterranean Sea

    Decoding the Dynamical Information Embedded in Highly Excited Vibrational Eigenstates: State Space and Phase Space Viewpoints

    No full text
    corecore