12,165 research outputs found
Strain relaxation in InGaN/GaN micro-pillars evidenced by high resolution cathodoluminescence hyperspectral imaging
A size-dependent strain relaxation and its effects on the optical properties of InGaN/GaN multiple quantum wells (QWs) in micro-pillars have been investigated through a combination of high spatial resolution cathodoluminescence (CL) hyperspectral imaging and numerical modeling. The pillars have diameters (d) ranging from 2 to 150 μm and were fabricated from a III-nitride light-emitting diode (LED) structure optimized for yellow-green emission at ∼560 nm. The CL mapping enables us to investigate strain relaxation in these pillars on a sub-micron scale and to confirm for the first time that a narrow (≤2 μm) edge blue-shift occurs even for the large InGaN/GaN pillars (d > 10 μm). The observed maximum blue-shift at the pillar edge exceeds 7 nm with respect to the pillar centre for the pillars with diameters in the 2–16 μm range. For the smallest pillar (d = 2 μm), the total blue-shift at the edge is 17.5 nm including an 8.2 nm “global” blue-shift at the pillar centre in comparison with the unetched wafer. By using a finite element method with a boundary condition taking account of a strained GaN buffer layer which was neglected in previous simulation works, the strain distribution in the QWs of these pillars was simulated as a function of pillar diameter. The blue-shift in the QWs emission wavelength was then calculated from the strain-dependent changes in piezoelectric field, and the consequent modification of transition energy in the QWs. The simulation and experimental results agree well, confirming the necessity for considering the strained buffer layer in the strain simulation. These results provide not only significant insights into the mechanism of strain relaxation in these micro-pillars but also practical guidance for design of micro/nano LEDs
A Young GMC Formed at the Interface of Two Colliding Supershells: Observations Meet Simulations
Dense, star-forming gas is believed to form at the stagnation points of
large-scale ISM flows, but observational examples of this process in action are
rare. We here present a giant molecular cloud (GMC) sandwiched between two
colliding Milky Way supershells, which we argue shows strong evidence of having
formed from material accumulated at the collision zone. Combining 12CO, 13CO
and C18O(J=1-0) data with new high-resolution, 3D hydrodynamical simulations of
colliding supershells, we discuss the origin and nature of the GMC
(G288.5+1.5), favoring a scenario in which the cloud was partially seeded by
pre-existing denser material, but assembled into its current form by the action
of the shells. This assembly includes the production of some new molecular gas.
The GMC is well interpreted as non-self-gravitating, despite its high mass (MH2
~ 1.7 x 10^5 Msol), and is likely pressure confined by the colliding flows,
implying that self-gravity was not a necessary ingredient for its formation.
Much of the molecular gas is relatively diffuse, and the cloud as a whole shows
little evidence of star formation activity, supporting a scenario in which it
is young and recently formed. Drip-like formations along its lower edge may be
explained by fluid dynamical instabilities in the cooled gas.Comment: 13 pages, 9 figures, accepted for publication in Ap
A young giant molecular cloud formed at the interface of two colliding supershells: Observations meet simulations
Dense, star-forming gas is believed to form at the stagnation points of large-scale interstellar medium flows, but observational examples of this process in action are rare. We here present a giant molecular cloud (GMC) sandwiched between two colliding Milky Way supershells, which we argue shows strong evidence of having formed from material accumulated at the collision zone. Combining 12CO, 13CO, and C18O(J = 1-0) data with new high-resolution, three-dimensional hydrodynamical simulations of colliding supershells, we discuss the origin and nature of the GMC (G288.5+1.5), favoring a scenario in which the cloud was partially seeded by pre-existing denser material, but assembled into its current form by the action of the shells. This assembly includes the production of some new molecular gas. The GMC is well interpreted as non-self-gravitating, despite its high mass (), and is likely pressure confined by the colliding flows, implying that self-gravity was not a necessary ingredient for its formation. Much of the molecular gas is relatively diffuse, and the cloud as a whole shows little evidence of star formation activity, supporting a scenario in which it is young and recently formed. Drip-like formations along its lower edge may be explained by fluid dynamical instabilities in the cooled gas
Fluctuation limits of strongly degenerate branching systems
Functional limit theorems for scaled fluctuations of occupation time
processes of a sequence of critical branching particle systems in with
anisotropic space motions and strongly degenerated splitting abilities are
proved in the cases of critical and intermediate dimensions. The results show
that the limit processes are constant measure-valued Wienner processes with
degenerated temporal and simple spatial structures.Comment: 15 page
Accumulation of a 5′ proximal subgenomic RNA of \u3ci\u3eCitrus tristeza virus\u3c/i\u3e is correlated with encapsidation by the minor coat protein
During replication, Citrus tristeza virus (CTV) produces large amounts of two unusual subgenomic (sg) RNAs that are positive-stranded and 5′ coterminal. Although these RNAs are produced in similar amounts and are similar in size, with LMT1 (~750 nt) only slightly larger than LMT2 (~650), we found that the similar sgRNAs are produced differently. We previously showed that the LMT1 RNA is produced by premature termination during genomic RNA synthesis. However, LMT2 production was found to correlate with virion assembly instead of RNA replication. The time course of accumulation of the LMT2 RNA occurred late, coinciding with virion accumulation. The long flexuous virions of CTV contain two coat proteins that encapsidate the virions in a polar manner. The major coat protein encapsidates ~97% of the virion, while the minor capsid protein encapsidates the remainder of the genome beginning in the 5′ non-translated region with the transition zone at ~630 nucleotides from the 5′ end. The section of the virion RNA that was encapsidated by CPm was identical in size to the LMT2 RNA, suggesting that the LMT2 RNA represented a portion of the viral RNA protected by CPm encapsidation. Mutations that abrogated encapsidation by CPm also abolished the accumulation of LMT2 RNA. Thus, these two unusual but similar RNAs are produced via different pathways, one from RNA replication and one processed by the virion assembly process. To our knowledge, this represents the first evidence of a viral RNA processed by the assembly mechanism
The Glass Transition and Liquid-Gas Spinodal Boundaries of Metastable Liquids
A liquid can exist under conditions of thermodynamic stability or
metastability within boundaries defined by the liquid-gas spinodal and the
glass transition line. The relationship between these boundaries has been
investigated previously using computer simulations, the energy landscape
formalism, and simplified model calculations. We calculate these stability
boundaries semi-analytically for a model glass forming liquid, employing
accurate liquid state theory and a first-principles approach to the glass
transition. These boundaries intersect at a finite temperature, consistent with
previous simulation-based studies.Comment: Minor text revisions. Fig.s 4, 5 update
Talent Management as A New Managerial Approach to Managing People in An Organization
The purpose of this article is to understand talent management as a managerial approach to managing people in an organization using a systematic review. The novelty of the research consists in an attempt to create a unified concept of talent management, which has not yet been created, and which would be useful both for theoretical research and for practical activities in the HRM-field
Survival probability in diffractive Higgs production in high density QCD
In this paper, the contribution of hard processes described by the BFKL
pomeron exchange, is taken into account by calculating the first enhanced
diagram. The survival probability is estimated, using the ratio of the first
enhanced diagram and the single pomeron amplitude, taking into account all
essential pomeron loop diagrams in the toy model of Mueller. The triple pomeron
vertex is calculated explicitly in the momentum representation. This
calculation is used for estimating the survival probability, It turns out that
the survival probability is small, at . Hard pomeron re-scattering
processes contribute substantially to the survival probability.Comment: 28 pages, 7 figure
The Halo Mass of Optically Luminous Quasars at z ,F≈ ,F1-2 Measured via Gravitational Deflection of the Cosmic Microwave Background
© 2019. The American Astronomical Society. All rights reserved.We measure the average deflection of cosmic microwave background photons by quasars at 〈Z〉= 1.7. Our sample is selected from the Sloan Digital Sky Survey to cover the redshift range 0.9 ≤z≤2.2 with absolute i-band magnitudes of M i ≤-24 (K-corrected to z = 2). A stack of nearly 200,000 targets reveals an 8δ detection of Planck's estimate of the lensing convergence toward the quasars. We fit the signal with a model comprising a Navarro-Frenk-White density profile and a two-halo term accounting for correlated large-scale structure, which dominates the observed signal. The best-fitting model is described by an average halo mass log 10 (M h h -1 M)12.6 ±0.2 = and linear bias b=2.7±0.3 at 〈Z 〉= 1.7, in excellent agreement with clustering studies. We also report a hint, at a 90% confidence level, of a correlation between the convergence amplitude and luminosity, indicating that quasars brighter than Mi≲ -26 reside in halos of typical mass M h ≈ 10 13 h -1 M, scaling roughly as M h ∞ L opt 3/4 at M i ≲-24 mag, in good agreement with physically motivated quasar demography models. Although we acknowledge that this luminosity dependence is a marginal result, the observed Mh-L opt relationship could be interpreted as a reflection of the cutoff in the distribution of black hole accretion rates toward high Eddington ratios: the weak trend of Mh with Lopt observed at low luminosity becomes stronger for the most powerful quasars, which tend to be accreting close to the Eddington limit.Peer reviewedFinal Accepted Versio
The Supersymmetric Origin of Matter
The Minimal Supersymmetric extension of the Standard Model (MSSM) can provide
the correct neutralino relic abundance and baryon number asymmetry of the
universe. Both may be efficiently generated in the presence of CP violating
phases, light charginos and neutralinos, and a light top squark. Due to the
coannihilation of the neutralino with the light stop, we find a large region of
parameter space in which the neutralino relic density is consistent with WMAP
and SDSS data. We perform a detailed study of the additional constraints
induced when CP violating phases, consistent with the ones required for
baryogenesis, are included. We explore the possible tests of this scenario from
present and future electron Electric Dipole Moment (EDM) measurements, direct
neutralino detection experiments, collider searches and the b -> s gamma decay
rate. We find that the EDM constraints are quite severe and that electron EDM
experiments, together with stop searches at the Tevatron and Higgs searches at
the LHC, will provide a definite test of our scenario of electroweak
baryogenesis in the next few years.Comment: 30 pages, 14 figure
- …