163 research outputs found

    Frequency shifts in gravitational resonance spectroscopy

    Full text link
    Quantum states of ultracold neutrons in the gravitational field are to be characterized through gravitational resonance spectroscopy. This paper discusses systematic effects that appear in the spectroscopic measurements. The discussed frequency shifts, which we call Stern-Gerlach shift, interference shift, and spectator state shift, appear in conceivable measurement schemes and have general importance. These shifts have to be taken into account in precision experiments

    Quantum reflection of antihydrogen from a liquid helium film

    Full text link
    We study the quantum reflection of ultracold antihydrogen atoms bouncing on the surface of a liquid helium film. The Casimir-Polder potential and quantum reflection are calculated for different thicknesses of the film supported by different substrates. Antihydrogen can be protected from anni- hilation for as long as 1.3s on a bulk of liquid 4He, and 1.7s for liquid 3He. These large lifetimes open interesting perspectives for spectroscopic measurements of the free fall acceleration of antihydrogen. Variation of the scattering length with the thickness of a film of helium shows interferences which we interpret through a Liouville transformation of the quantum reflection problem

    A spectroscopy approach to measure the gravitational mass of antihydrogen

    Full text link
    We study a method to induce resonant transitions between antihydrogen (Hˉ\bar{H}) quantum states above a material surface in the gravitational field of the Earth. The method consists of applying a gradient of magnetic field, which is temporally oscillating with the frequency equal to a frequency of transition between gravitational states of antihydrogen. A corresponding resonant change in the spatial density of antihydrogen atoms could be measured as a function of the frequency of applied field. We estimate an accuracy of measuring antihydrogen gravitational states spacing and show how a value of the gravitational mass of the Hˉ\bar{H} atom could be deduced from such a measurement. We also demonstrate that a method of induced transitions could be combined with a free-fall-time measurement in order to further improve the precision

    Multi-mode quasi-periodic pulsations in a solar flare

    Get PDF
    Context. Quasi-periodic pulsations (QPP) of the electromagnetic radiation emitted in solar and stellar flares are often detected in microwave, white light, X-ray, and gamma-ray bands. Mechanisms for QPP are intensively debated in the literature. Previous studies revealed that QPP may manifest non-linear, non-stationary and, perhaps, multi-modal processes operating in flares. Aims. We study QPP of the microwave emission generated in an X3.2-class solar flare on 14 May, 2013, observed with the Nobeyama Radioheliograph (NoRH), aiming to reveal signatures of the non-linear, non-stationary, and multi-modal processes in the signal. Methods. The NoRH correlation signal obtained at the 17 GHz intensity has a clear QPP pattern. The signal was analysed with the Hilbert-Huang transform (HHT) that allows one to determine its instant amplitude and frequency, and their time variation. Results. It was established that the QPP consists of at least three well-defined intrinsic modes, with the mean periods of 15, 45, and 100 s. All the modes have quasi-harmonic behaviour with different modulation patterns. The 100 s intrinsic mode is a decaying oscillation, with the decay time of 250 s. The 15 s intrinsic mode shows a similar behaviour, with the decay time of 90 s. The 45 s mode has a wave-train behaviour. Conclusions. Dynamical properties of detected intrinsic modes indicate that the 100 s and 15 s modes are likely to be associated with fundamental kink and sausage modes of the flaring loop, respectively. The 100 s oscillation could also be caused by the fundamental longitudinal mode, while this interpretation requires the plasma temperature of about 30 million K and hence is not likely. The 45 s mode could be the second standing harmonics of the kink mode

    THE FORMATIVE IDEA OF CUBISM IN MODERN GRAPHIC DESIGN

    Full text link
    В данной статье рассматривается пластическая идея кубизма как одно из направлений изобразительного искусства, и его влияние на графический дизайн современности. Кубизм игнорирует пропорции, целостность жизненных образцов и материальных объектов. В кубистской графике активно применяются первоформы, знаки и символы в различных композиционных сочетаниях. Это явление в контексте современного графического дизайна вызывает исследовательский интерес.This article discusses the plastic idea of cubism as one of the areas of fi ne art, and its infl uence on the graphic design of our time. Cubism ignores the proportions, the integrity of life samples and material objects. In cubist graphics, primary forms, signs and symbols in various compositional combinations are actively used. This phenomenon in the context of modern graphic design is of research interest

    THE FORMATIVE IDEA OF CUBISM IN MODERN GRAPHIC DESIGN

    Full text link
    В статье рассматривается пластическая идея кубизма как одно из направлений изобразительного искусства, и его влияние на графический дизайн современности. Кубизм игнорирует пропорции, целостность жизненных образцов и материальных объектов. В кубистской графике активно применяются первоформы, знаки и символы в различных композиционных сочетаниях. Это явление в контексте современного графического дизайна вызывает исследовательский интерес.This article discusses the plastic idea of cubism as one of the areas of fi ne art, and its infl uence on the graphic design of our time. Cubism ignores the proportions, the integrity of life samples and material objects. In cubist graphics, primary forms, signs and symbols in various compositional combinations are actively used. This phenomenon in the context of modern graphic design is of research interest

    Fast magnetoacoustic wave trains in magnetic funnels of the solar corona

    Get PDF
    Context: Fast magneto-acoustic waves are highly dispersive in waveguides, so they can generate quasi-periodic wave trains if a localised, impulsive driver is applied. Such wave trains have been observed in the solar corona and may be of use as a seismological tool since they depend upon the plasma structuring perpendicular to the direction of propagation. Aims. We extend existing models of magnetoacoustic waveguides to consider the effects of an expanding magnetic field. The funnel geometry employed includes a field-aligned density structure. Methods: We performed 2D numerical simulations of impulsively generated fast magneto-acoustic perturbations. The effects of the density contrast ratio, density stratification, and spectral profile of the driver upon the excited wave trains were investigated. Results: The density structure acts as a dispersive waveguide for fast magneto-acoustic waves and generates a quasi-periodic wave train similar to previous models. The funnel geometry leads to generating additional wave trains that propagate outside the density structure. These newly discovered wave trains are formed by the leakage of transverse perturbations, but they propagate upwards owing to the refraction caused by the magnetic funnel. Conclusions: The results of our funnel model may be applicable to wave trains observed propagating in the solar corona. They demonstrate similar properties to those found in our simulations

    Quantifying human genome parameters in aging

    Get PDF
    Healthy human longevity is a global goal of the world health system. Determining the causes and processes influencing human longevity is the primary fundamental goal facing the scientific community. Currently, the main efforts of the scientific community are aimed at identifying the qualitative characteristics of the genome that determine the trait. At the same time, when evaluating qualitative characteristics, there are many challenges that make it difficult to establish associations. Quantitative traits are burdened with such problems to a lesser extent, but they are largely overlooked in current genomic studies of aging and longevity. Although there is a wide repertoire of quantitative trait analyses based on genomic data, most opportunities are ignored by authors, which, along with the inaccessibility of published data, leads to the loss of this important information. This review focuses on describing quantitative traits important for understanding aging and necessary for analysis in further genomic studies, and recommends the inclusion of the described traits in the analysis. The review considers the relationship between quantitative characteristics of the mitochondrial genome and aging, longevity, and age-related neurodegenerative diseases, such as the frequency of extensive mitochondrial DNA (mtDNA) deletions, mtDNA half-life, the frequency of A>G replacements in the mtDNA heavy chain, the number of mtDNA copies; special attention is paid to the mtDNA methylation sign. A separate section of this review is devoted to the correlation of telomere length parameters with age, as well as the association of telomere length with the amount of mitochondrial DNA. In addition, we consider such a quantitative feature as the rate of accumulation of somatic mutations with aging in relation to the lifespan of living organisms. In general, it may be noted that there are quite serious reasons to suppose that various quantitative characteristics of the genome may be directly or indirectly associated with certain aspects of aging and longevity. At the same time, the available data are clearly insufficient for definitive conclusions and the determination of causal relationships

    Light scattering and localization in an ultracold and dense atomic system

    Full text link
    The quantum optical response of high density ultracold atomic systems is critical to a wide range of fundamentally and technically important physical processes. These include quantum image storage, optically based quantum repeaters and ultracold molecule formation. We present here a microscopic analysis of the light scattering on such a system, and we compare it with a corresponding description based on macroscopic Maxwell theory. Results are discussed in the context of the spectral resonance structure, time-dependent response, and the light localization problem
    corecore