10,051 research outputs found

    Inferring DNA sequences from mechanical unzipping: an ideal-case study

    Full text link
    We introduce and test a method to predict the sequence of DNA molecules from in silico unzipping experiments. The method is based on Bayesian inference and on the Viterbi decoding algorithm. The probability of misprediction decreases exponentially with the number of unzippings, with a decay rate depending on the applied force and the sequence content.Comment: Source as TeX file with ps figure

    IELTS and an English for academic study programme: points of similarity and areas of divergence

    Get PDF
    This paper describes an analysis of assessments on a preparatory, English for academic study (EAS) programme at a New Zealand university and of IELTS tests. The university accepts students with the required Band 6 overall in IELTS, and also those who graduate from the EAS programme with Grade B and above for its undergraduate programmes. Other institutions also accept this EAS certificate as evidence of English language proficiency. However, as far as we are aware there has been no formal comparative study of the points of similarities and areas of divergence between IELTS and such programmes. The identification of similarities and differences allows for a detailed profile of the knowledge, skills, and competencies acquired by students who successfully complete such pre-sessional programmes, as compared with students who have completed an IELTS preparation programme. It is anticipated that the information provided, will be of benefit to academic English and literacy practitioners

    One-Liners

    Get PDF
    One-Liners from P.T. Borgia, J. Irelan and E.U. Selker, and B.C. Turner and A. Fairfiel

    3D-Printed Hollow Microneedle-Lateral Flow Devices for Rapid Blood-Free Detection of C-Reactive Protein and Procalcitonin

    Get PDF
    \ua9 2023 The Authors. Advanced Materials Technologies published by Wiley-VCH GmbH.Hollow microneedle devices as a technology for interstitial fluid extraction show promise for the minimally invasive point-of-care detection of analytes. Despite increasing efforts toward on-patch diagnostics, the use of hollow microneedles has been limited due to the complexity caused by integrating hollow microneedles with established point-of-care diagnostic techniques. Herein, a 3D printing method is utilized, to provide low-cost manufacturing of custom-designed hollow microneedle devices, allowing for easy integration with lateral flow assays for rapid and blood-free diagnostics. Microneedle surface modification through PEGylation results in prolonged and enhanced hydrophilicity, enabling passive uptake of small volume samples (≈22.5 \ub5L) and an enhanced shelf life. The hollow microneedle devices are deemed non-cytotoxic to cell types found within the skin following short-term and prolonged exposure in accordance with ISO10993. Furthermore, the devices demonstrate high mechanical strength and successfully penetrate porcine skin grafts without damaging the surrounding skin morphology. This work also demonstrates for the first time the use of hollow microneedles for the simultaneous detection, at clinically relevant concentrations, of C-reactive protein (LoD = 10 \ub5g mL−1) and procalcitonin (LoD = 1 ng mL−1), through porcine skin, ultimately demonstrating the beneficial use of manufactured 3D-printed hollow microneedles towards low-cost blood-free diagnostics of inflammation markers

    Conductive Polymer-Coated 3D Printed Microneedles: Biocompatible Platforms for Minimally Invasive Biosensing Interfaces

    Get PDF
    \ua9 2023 The Authors. Small published by Wiley-VCH GmbH.Conductive polymeric microneedle (MN) arrays as biointerface materials show promise for the minimally invasive monitoring of analytes in biodevices and wearables. There is increasing interest in microneedles as electrodes for biosensing, but efforts have been limited to metallic substrates, which lack biological stability and are associated with high manufacturing costs and laborious fabrication methods, which create translational barriers. In this work, additive manufacturing, which provides the user with design flexibility and upscale manufacturing, is employed to fabricate acrylic-based microneedle devices. These microneedle devices are used as platforms to produce intrinsically-conductive, polymer-based surfaces based on polypyrrole (PPy) and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS). These entirely polymer-based solid microneedle arrays act as dry conductive electrodes while omitting the requirement of a metallic seed layer. Two distinct coating methods of 3D-printed solid microneedles, in situ polymerization and drop casting, enable conductive functionality. The microneedle arrays penetrate ex vivo porcine skin grafts without compromising conductivity or microneedle morphology and demonstrate coating durability over multiple penetration cycles. The non-cytotoxic nature of the conductive microneedles is evaluated using human fibroblast cells. The proposed fabrication strategy offers a compelling approach to manufacturing polymer-based conductive microneedle surfaces that can be further exploited as platforms for biosensing

    Theory of finite-entanglement scaling at one-dimensional quantum critical points

    Full text link
    Studies of entanglement in many-particle systems suggest that most quantum critical ground states have infinitely more entanglement than non-critical states. Standard algorithms for one-dimensional many-particle systems construct model states with limited entanglement, which are a worse approximation to quantum critical states than to others. We give a quantitative theory of previously observed scaling behavior resulting from finite entanglement at quantum criticality: the scaling theory of finite entanglement is only superficially similar to finite-size scaling, and has a different physical origin. We find that finite-entanglement scaling is governed not by the scaling dimension of an operator but by the "central charge" of the critical point, which counts its universal degrees of freedom. An important ingredient is the recently obtained universal distribution of density-matrix eigenvalues at a critical point\cite{calabrese1}. The parameter-free theory is checked against numerical scaling at several quantum critical points.Comment: 4 pages + 2 pages supplementary informatio

    The Tensor to Scalar Ratio of Phantom Dark Energy Models

    Get PDF
    We investigate the anisotropies in the cosmic microwave background in a class of models which possess a positive cosmic energy density but negative pressure, with a constant equation of state w = p/rho < -1. We calculate the temperature and polarization anisotropy spectra for both scalar and tensor perturbations by modifying the publicly available code CMBfast. For a constant initial curvature perturbation or tensor normalization, we have calculated the final anisotropy spectra as a function of the dark energy density and equation of state w and of the scalar and tensor spectral indices. This allows us to calculate the dependence of the tensor-to-scalar ratio on w in a model with phantom dark energy, which may be important for interpreting any future detection of long-wavelength gravitational waves.Comment: 5 pages, 4 figure

    The Cosmological Constant is Back

    Get PDF
    A diverse set of observations now compellingly suggest that Universe possesses a nonzero cosmological constant. In the context of quantum-field theory a cosmological constant corresponds to the energy density of the vacuum, and the wanted value for the cosmological constant corresponds to a very tiny vacuum energy density. We discuss future observational tests for a cosmological constant as well as the fundamental theoretical challenges---and opportunities---that this poses for particle physics and for extending our understanding of the evolution of the Universe back to the earliest moments.Comment: latex, 8 pages plus one ps figure available as separate compressed uuencoded fil

    A limit on the detectability of the energy scale of inflation

    Get PDF
    We show that the polarization of the cosmic microwave background can be used to detect gravity waves from inflation if the energy scale of inflation is above 3.2 times 10^15 GeV. These gravity waves generate polarization patterns with a curl, whereas (to first order in perturbation theory) density perturbations do not. The limiting ``noise'' arises from the second--order generation of curl from density perturbations, or rather residuals from its subtraction. We calculate optimal sky coverage and detectability limits as a function of detector sensitivity and observing time.Comment: 4 pages, 3 figures, submitted to PR

    SU(1,1) symmetry of multimode squeezed states

    Full text link
    We show that a class of multimode optical transformations that employ linear optics plus two-mode squeezing can be expressed as SU(1,1) operators. These operations are relevant to state-of-the-art continuous variable quantum information experiments including quantum state sharing, quantum teleportation, and multipartite entangled states. Using this SU(1,1) description of these transformations, we obtain a new basis for such transformations that lies in a useful representation of this group and lies outside the often-used restriction to Gaussian states. We analyze this basis, show its application to a class of transformations, and discuss its extension to more general quantum optical networks
    corecore