1,738 research outputs found

    Nanostructured thermoelectric generator for energy harvesting

    No full text
    This paper presents the development processes towards a new generation of nanostructured thermoelectric generators for power harvesting from small temperature gradients by using a combination of traditional silicon microfabrication techniques, electroplating and submicron ion-track nanolithography. Polyimide nanotemplates with pore diameters ranging from 30nm to 120 nm were fabricated. Preliminary results for Bi2Te3 nanowires (50 and 120 nm diameter) electroplated into polycarbonate ion-track commercial membranes are presented. Bi2Te3 nanowires of R ̄ 3m structure, with preferential orientation in the (015) and (110) crystallographic plans with nearly stoichiometric composition were electroplated. The fine-grained observed microstructure (6-10 nm) and (110) crystalline orientation appear extremely promising for improving thermoelectric material properties

    Feshbach spectroscopy and analysis of the interaction potentials of ultracold sodium

    Get PDF
    We have studied magnetic Feshbach resonances in an ultracold sample of Na prepared in the absolute hyperfine ground state. We report on the observation of three s-, eight d-, and three g-wave Feshbach resonances, including a more precise determination of two known s-wave resonances, and one s-wave resonance at a magnetic field exceeding 200mT. Using a coupled-channels calculation we have improved the sodium ground-state potentials by taking into account these new experimental data, and derived values for the scattering lengths. In addition, a description of the molecular states leading to the Feshbach resonances in terms of the asymptotic-bound-state model is presented.Comment: 11 pages, 4 figure

    A new actinic flux 4?-spectroradiometer: Instrument design and application to clear sky and broken cloud conditions

    No full text
    International audienceA new 4p-spectroradiometer was developed for measuring actinic flux especially under cloudy conditions based on a fixed grating imaging spectrograph and a CCD-detector leading to a simultaneous measurement of the spectrum. The new instrument incorporates a novel optical head with a 4p-field of view independent of angle of incidence. Comparisons with the actinic flux spectroradiometer of the Institute of Atmospheric Chemistry of Forschungszentrum Jülich showed a very good agreement within the limit of the uncertainties of the two instruments. Our spectroradiometer was applied to investigate the effects of broken clouds on the actinic flux and photolysis frequencies on the ground during the BERLIOZ campaign. Reductions as well as enhancements compared to the clear sky case were seen, both effects are larger in the UV-A than the UV-B spectral region. Furthermore the new instrument was used for simultaneous measurements in different altitudes on a tower to study the transmission and attenuation of actinic flux in low clouds. A correlation of attenuation with the simultaneously measured liquid water content of the cloud was found

    Thermal Instability of Porous Gold Nanowires

    Get PDF

    In-Situ High Voltage Tests on Pristine and Irradiated Polyimide

    Get PDF

    Antimony Nanowire Networks

    Get PDF

    Feshbach spectroscopy and scattering properties of ultracold Li+Na mixtures

    Get PDF
    We have observed 26 interspecies Feshbach resonances at fields up to 2050 G in ultracold 6^6Li+23^{23}Na mixtures for different spin-state combinations. Applying the asymptotic bound-state model to assign the resonances, we have found that most resonances have d-wave character. This analysis serves as guidance for a coupled-channel calculation, which uses modified interaction potentials to describe the positions of the Feshbach resonances well within the experimental uncertainty and to calculate their widths. The scattering length derived from the improved interaction potentials is experimentally confirmed and deviates from previously reported values in sign and magnitude. We give prospects for 7^7Li+23^{23}Na and predict broad Feshbach resonances suitable for tuning.Comment: 8 pages, 4 figures, version as published in PR
    corecore