1,467 research outputs found

    Contracts, Quality, and Default: Endogenizing a Buyer's Rejection Rate

    Get PDF
    Replaced with revised version of paper 08/06/07.Consumer/Household Economics, Demand and Price Analysis,

    Market Power after the Transition

    Get PDF
    Agribusiness, Financial Economics,

    Advanced superconducting magnets investigation

    Get PDF
    Mathematical models for steady state behavior of composite superconductors and experimental verification using magnet coi

    Solving an open problem about the G-Drazin partial order

    Get PDF
    [EN] G-Drazin inverses and the G-Drazin partial order for square matrices have been both recently introduced by Wang and Liu. They proved the following implication: If A is below B under the G-Drazin partial order, then any G-Drazin inverse of B is also a G-Drazin inverse of A. However, this necessary condition could not be stated as a characterization and the validity (or not) of the converse implication was posed as an open problem. In this paper, this problem is completely solved. It is obtained that the converse, in general, is false, and a form to construct counterexamples is provided. It is also proved that the converse holds under an additional condition (which is also necessary) as well as for some special cases of matrices.Partially supported by Universidad Nacional de RĂ­o Cuarto (Grant PPI 18/C472), CONICET (Grant PIP 112-201501-00433CO), and by ANPCyT (Grant PICT 2018-03492) Partially supported by Universidad Nacional de La Pampa, Facultad de IngenierĂ­a (Grant Resol. Nro. 155/14) Partially supported by Ministerio de EconomĂ­a, Industria y Competitividad of Spain (Grant Red de Excelencia MTM2017-90682-REDT), and by Universidad Nacional del Sur of Argentina (Grant 24/L108)Ferreyra, DE.; Lattanzi, M.; Levis, FE.; Thome, N. (2020). Solving an open problem about the G-Drazin partial order. The Electronic Journal of Linear Algebra. 36:55-66. http://hdl.handle.net/10251/161871S55663

    Two-Phase Cooling of Targets and Electronics for Particle Physics Experiments

    Get PDF
    An overview of the LTCM lab’s decade of experience with two-phase cooling research for computer chips and power electronics will be described with its possible beneficial application to high-energy physics experiments. Flow boiling in multi-microchannel cooling elements in silicon (or aluminium) have the potential to provide high cooling rates (up to as high as 350 W/cm2), stable and uniform temperatures of targets and electronics, and lightweight construction while also minimizing the fluid inventory. An overview of two-phase flow and boiling research in single microchannels and multi-microchannel test elements will be presented together with video images of these flows. The objective is to stimulate discussion on the use of two-phase cooling in these demanding applications, including the possible use of CO2

    The weak core inverse

    Get PDF
    [EN] In this paper, we introduce a new generalized inverse, called weak core inverse (or, in short, WC inverse) of a complex square matrix. This new inverse extends the notion of the core inverse defined by Baksalary and Trenkler (Linear Multilinear Algebra 58(6):681-697, 2010). We investigate characterizations, representations, and properties for this generalized inverse. In addition, we introduce weak core matrices (or, in short, WC matrices) and we show that these matrices form a more general class than that given by the known weak group matrices, recently investigated by H. Wang and X. Liu.In what follows, we detail the acknowledgements. D.E. Ferreyra, F.E. Levis, A.N. Priori - Partially supported by Universidad Nacional de Rio Cuarto (Grant PPI 18/C559) and CONICET (Grant PIP 112-201501-00433CO). D.E. Ferreyra F.E. Levis - Partially supported by ANPCyT (Grant PICT 201803492). D.E. Ferreyra, N. Thome -Partially supported by Universidad Nacional de La Pampa, Facultad de Ingenieria (Grant Resol. Nro. 135/19). N. Thome -Partially supported by Ministerio de Economia, Industria y Competitividad of Spain (Grant Red de Excelencia MTM2017-90682-REDT) and by Universidad Nacional del Sur of Argentina (Grant 24/L108). We would like to thank the Referees for their valuable comments and suggestions which helped us to considerably improve the presentation of the paperFerreyra, DE.; Levis, FE.; Priori, AN.; Thome, N. (2021). The weak core inverse. Aequationes Mathematicae. 95(2):351-373. https://doi.org/10.1007/s00010-020-00752-zS351373952Ben-Israel, A., Greville, T.N.E.: Generalized Inverses: Theory and Applications, 2nd edn. Springer, New York (2003)Baksalary, O.M., Trenkler, G.: Core inverse of matrices. Linear Multilinear Algebra 58(6), 681–697 (2010)Baksalary, O.M., Trenkler, G.: On a generalized core inverse. Appl. Math. Comput. 236(1), 450–457 (2014)Campbell, S.L., Meyer Jr., C.D.: Generalized Inverses of Linear Transformations. SIAM, Philadelphia (2009)Ceryan, N.: Handbook of Research on Trends and Digital Advances in Engineering Geology, Advances in Civil and Industrial Engineering. IGI Global, Hershey (2018)Chen, J.L., Mosić, D., Xu, S.Z.: On a new generalized inverse for Hilbert sapce operators. Quaest. Math. (2019). https://doi.org/10.2989/16073606.2019.1619104Cvetković-Ilić, D.S., Mosić, D., Wei, Y.: Partial orders on B(H)B(H). Linear Algebra Appl. 481, 115–130 (2015)Djikić, M.S.: Lattice properties of the core-partial order. Banach J. Math. Anal. 11(2), 398–415 (2017)Doty, K.L., Melchiorri, C., Bonivento, C.: A theory of generalized inverses applied to robotics. Int. J. Robot. Res. 12(1), 1–19 (1993)Drazin, M.P.: Pseudo inverses in associative rings and semigroups. Am. Math. Mon. 65(7), 506–514 (1958)Ferreyra, D.E., Levis, F.E., Thome, N.: Revisiting of the core EP inverse and its extension to rectangular matrices. Quaest. Math. 41(2), 265–281 (2018)Ferreyra, D.E., Levis, F.E., Thome, N.: Maximal classes of matrices determining generalized inverses. Appl. Math. Comput. 333, 42–52 (2018)Ferreyra, D.E., Levis, F.E., Thome, N.: Characterizations of kk-commutative equalities for some outer generalized inverses. Linear Multilinear Algebra 68(1), 177–192 (2020)Hartwig, R.E., Spindelböck, K.: Matrices for which A∗A^* and A†A^\dagger conmmute. Linear Multilinear Algebra 14(3), 241–256 (1984)Liu, X., Cai, N.: High-order iterative methods for the DMP inverse. J. Math. Article ID 8175935, 6 p (2018)Malik, S., Thome, N.: On a new generalized inverse for matrices of an arbitrary index. Appl. Math. Comput. 226(1), 575–580 (2014)Malik, S., Rueda, L., Thome, N.: The class of mm-EP and mm-normal matrices. Linear Multilinear Algebra 64(11), 2119–2132 (2016)Manjunatha Prasad, K., Mohana, K.S.: Core EP inverse. Linear Multilinear Algebra 62(6), 792–802 (2014)Mehdipour, M., Salemi, A.: On a new generalized inverse of matrices. Linear Multilinear Algebra 66(5), 1046–1053 (2018)Mitra, S.K., Bhimasankaram, P., Malik, S.: Matrix Partial Orders, Shorted Operators and Applications, Series in Algebra, vol. 10. World Scientific Publishing Co. Pte. Ltd., Singapore (2010)Mosić, D., Stanimirović, P.S.: Composite outer inverses for rectangular matrices. Quaest. Math. (2019). https://doi.org/10.2989/16073606.2019.1671526Penrose, R.: A generalized inverse for matrices. Math. Proc. Cambr. Philos. Soc. 51(3), 406–413 (1955)Rakić, D.S., Dincić, N.C., Djordjević, D.S.: Core inverse and core partial order of Hilbert space operators. Appl. Math. Comput. 244(1), 283–302 (2014)Soleimani, F., Stanimirović, P.S., Soleymani, F.: Some matrix iterations for computing generalized inverses and balancing chemical equations. Algorithms 8(4), 982–998 (2015)Tosić, M., Cvetković-Ilić, D.S.: Invertibility of a linear combination of two matrices and partial orderings. Appl. Math. Comput. 218(9), 4651–4657 (2012)Wang, X.: Core-EP decomposition and its applications. Linear Algebra Appl. 508(1), 289–300 (2016)Wang, H., Chen, J.: Weak group inverse. Open Math. 16(1), 1218–1232 (2018)Wang, H., Liu, X.: The weak group matrix. Aequ. Math. 93(6), 1261–1273 (2019)Xiao, G.Z., Shen, B.Z., Wu, C.K., Wong, C.S.: Some spectral techniques in coding theory. Discrete Math. 87(2), 181–186 (1991)Zhou, M., Chen, J., Stanimirović, P., Katsikis, V.N., Ma, H.: Complex varying-parameter Zhang neural networks for computing core and core-EP inverse. Neural Process. Lett. 51, 1299–1329 (2020)Zhu, H.: On DMP inverses and mm-EP elements in rings. Linear Multilinear Algebra 67(4), 756–766 (2019)Zhu, H., PatrĂ­cio, P.: Several types of one-sided partial orders in rings. Rev. R. Acad. Cienc. Exactas FĂ­s. Nat. Ser. A Mat. RACSAM 113, 3177–3184 (2019

    Extending EP matrices by means of recent generalized inverses

    Full text link
    It is well known that a square complex matrix is called EP if it commutes with its Moore-Penrose inverse. In this paper, new classes of matrices which extend this concept are characterized. For that, we consider commutative equalities given by matrices of arbitrary index and generalized inverses recently investigated in the literature. More specifically, these classes are characterized by expressions of type AmX=XAmA^mX=XA^m, where XX is an outer inverse of a given complex square matrix AA and mm is an arbitrary positive integer. The relationships between the different classes of matrices are also analyzed. Finally, a picture presents an overview of the overall studied classes

    Uncertainties on Central Exclusive Scalar Luminosities from the unintegrated gluon distributions

    Full text link
    In a previous report we used the Linked Dipole Chain model unintegrated gluon densities to investigate the uncertainties in the predictions for central exclusive production of scalars at hadron colliders. Here we expand this investigation by also looking at other parameterizations of the unintegrated gluon density, and look in more detail on the behavior of these at small k_T. We confirm our conclusions that the luminosity function for central exclusive production is very sensitive to this behavior. However, we also conclude that the available densities based on the CCFM and LDC evolutions are not constrained enough to give reliable predictions even for inclusive Higgs production at the LHC

    Understanding Difference-in-differences methods to evaluate policy effects with staggered adoption: an application to Medicaid and HIV

    Full text link
    While a randomized control trial is considered the gold standard for estimating causal treatment effects, there are many research settings in which randomization is infeasible or unethical. In such cases, researchers rely on analytical methods for observational data to explore causal relationships. Difference-in-differences (DID) is one such method that, most commonly, estimates a difference in some mean outcome in a group before and after the implementation of an intervention or policy and compares this with a control group followed over the same time (i.e., a group that did not implement the intervention or policy). Although DID modeling approaches have been gaining popularity in public health research, the majority of these approaches and their extensions are developed and shared within the economics literature. While extensions of DID modeling approaches may be straightforward to apply to observational data in any field, the complexities and assumptions involved in newer approaches are often misunderstood. In this paper, we focus on recent extensions of the DID method and their relationships to linear models in the setting of staggered treatment adoption over multiple years. We detail the identification and estimation of the average treatment effect among the treated using potential outcomes notation, highlighting the assumptions necessary to produce valid estimates. These concepts are described within the context of Medicaid expansion and retention in care among people living with HIV (PWH) in the United States. While each DID approach is potentially valid, understanding their different assumptions and choosing an appropriate method can have important implications for policy-makers, funders, and public health as a whole
    • 

    corecore