7,637 research outputs found

    Theta Dependence In The Large N Limit Of Four-Dimensional Gauge Theories

    Get PDF
    The theta dependent of pure gauge theories in four dimensions can be studied using a duality of large N gauge theories with string theory on a certain spacetime. Via this duality, one can argue that for every theta, there are infinitely many vacua that are stable in the large N limit. The true vacuum, found by minimizing the energy in this family, is a smooth function of theta except at theta equal to pi, where it jumps. This jump is associated with spontaneous breaking of CP symmetry. Domain walls separating adjacent vacua are described in terms of wrapped sixbranes.Comment: 8 p

    Wu-Yang Monopoles and Non-Abelian Seiberg-Witten Equations

    Get PDF
    Some exact solutions of the SU(2) Seiberg-Witten equations in Minkowski spacetime are given.Comment: 6 pages, LATEX file, no figures. To appear in Mod. Phys. Lett.

    Asymptotically AdS Magnetic Branes in (n+1)-dimensional Dilaton Gravity

    Full text link
    We present a new class of asymptotically AdS magnetic solutions in (n+1n+1)-dimensional dilaton gravity in the presence of an appropriate combination of three Liouville-type potentials. This class of solutions is asymptotically AdS in six and higher dimensions and yields a spacetime with longitudinal magnetic field generated by a static brane. These solutions have no curvature singularity and no horizons but have a conic geometry with a deficit angle. We find that the brane tension depends on the dilaton field and approaches a constant as the coupling constant of dilaton field goes to infinity. We generalize this class of solutions to the case of spinning magnetic solutions and find that, when one or more rotation parameters are nonzero, the brane has a net electric charge which is proportional to the magnitude of the rotation parameters. Finally, we use the counterterm method inspired by AdS/CFT correspondence and compute the conserved quantities of these spacetimes. We found that the conserved quantities do not depend on the dilaton field, which is evident from the fact that the dilaton field vanishes on the boundary at infinity.Comment: 15 page

    Gravitational Backreaction Effects on the Holographic Phase Transition

    Full text link
    We study radion stabilization in the compact Randall-Sundrum model by introducing a bulk scalar field, as in the Goldberger and Wise mechanism, but (partially) taking into account the backreactions from the scalar field on the metric. Our generalization reconciles the radion potential found by Goldberger and Wise with the radion mass obtained with the so-called superpotential method where backreaction is fully considered. Moreover we study the holographic phase transition and its gravitational wave signals in this model. The improved control over backreactions opens up a large region in parameter space and leads, compared to former analysis, to weaker constraints on the rank N of the dual gauge theory. We conclude that, in the regime where the 1/N expansion is justified, the gravitational wave signal is detectable by LISA.Comment: 42 pages, 4 figures; v2: minor changes for the publicatio

    Evidence for fast thermalization in the plane-wave matrix model

    Full text link
    We perform a numerical simulation of the classical evolution of the plane-wave matrix model with semiclassical initial conditions. Some of these initial conditions thermalize and are dual to a black hole forming from the collision of D-branes in the plane wave geometry. In particular, we consider a large fuzzy sphere (a D2-brane) plus a single eigenvalue (a D0-particle) going exactly through the center of the fuzzy sphere and aimed to intersect it. Including quantum fluctuations of the off-diagonal modes in the initial conditions, with sufficient kinetic energy the configuration collapses to a small size. We also find evidence for fast thermalization: rapidly decaying autocorrelation functions at late times with respect to the natural time scale of the system.Comment: 5 pages, 5 figures, revtex4 format; v2: minor typos fixed; v3: 8 pages, 9 figures, minor changes, includes a supplement as appeared on PR

    Bound states in N = 4 SYM on T^3: Spin(2n) and the exceptional groups

    Full text link
    The low energy spectrum of (3+1)-dimensional N=4 supersymmetric Yang-Mills theory on a spatial three-torus contains a certain number of bound states, characterized by their discrete abelian magnetic and electric 't Hooft fluxes. At weak coupling, the wave-functions of these states are supported near points in the moduli space of flat connections where the unbroken gauge group is semi-simple. The number of such states is related to the number of normalizable bound states at threshold in the supersymmetric matrix quantum mechanics with 16 supercharges based on this unbroken group. Mathematically, the determination of the spectrum relies on the classification of almost commuting triples with semi-simple centralizers. We complete the work begun in a previous paper, by computing the spectrum of bound states in theories based on the even-dimensional spin groups and the exceptional groups. The results satisfy the constraints of S-duality in a rather non-trivial way.Comment: 20 page

    Witten-Veneziano from Green-Schwarz

    Full text link
    We consider the U(1) problem within the AdS/CFT framework. We explain how the Witten-Veneziano formula for the eta' mass is related to a generalized Green-Schwarz mechanism. The closed string mode, that cancels the anomaly of the gauged U(1) axial symmetry, is identified with the eta' meson. In a particular set-up of D3-branes on a C3/(Z3xZ3) orbifold singularity, the eta' meson is a twisted-sector R-R field.Comment: 10 pages, LaTex. 1 eps figure. v2: minor changes, refs. added, to appear in JHE

    On Induced Gravity in 2-d Topological Theories

    Full text link
    We study 2-d Ď•F\phi F gauge theories with the objective to understand, also at the quantum level, the emergence of induced gravity. The wave functionals - representing the eigenstates of a vanishing flat potential - are obtained in the Ď•\phi representation. The composition of the space they describe is then analyzed: the state corresponding to the singlet representation of the gauge group describes a topological universe. For other representations a metric which is invariant under the residual gauge group is induced, apart from possible topological obstructions. Being inherited from the group metric it is rather rigid.Comment: 38, tex, 160/93/e

    Non-abelian gauge antisymmetric tensor fields

    Full text link
    We construct the theory of non-abelian gauge antisymmetric tensor fields, which generalize the standard Yang-MIlls fields and abelian gauge p-forms. The corresponding gauge group acts on the space of inhomogeneous differential forms and it is shown to be a supergroup. The wide class of generalized Chern-Simons actions is constructed.Comment: 20 pages, Late
    • …
    corecore