90,214 research outputs found

    An improved panel method for the solution of three-dimensional leading edge vortex flows Volume 2: User's guide and programmer's document

    Get PDF
    A computer program developed for solving the subsonic, three dimensional flow over wing-body configurations with leading edge vortex separation is presented. Instructions are given for the proper set up and input of a problem into the computer code. Program input formats and output are described, as well as the overlay structure of the program. The program is written in FORTRAN

    An improved panel method for the solution of three-dimensional leading-edge vortex flows. Volume 1: Theory document

    Get PDF
    An improved panel method for the solution of three dimensional flow and wing and wing-body combinations with leading edge vortex separation is presented. The method employs a three dimensional inviscid flow model in which the configuration, the rolled-up vortex sheets, and the wake are represented by quadratic doublet distributions. The strength of the singularity distribution as well as shape and position of the vortex spirals are computed in an iterative fashion starting with an assumed initial sheet geometry. The method calculates forces and moments as well as detail surface pressure distributions. Improvements include the implementation of improved panel numerics for the purpose of elimination the highly nonlinear effects of ring vortices around double panel edges, and the development of a least squares procedure for damping vortex sheet geometry update instabilities. A complete description of the method is included. A variety of cases generated by the computer program implementing the method are presented which verify the mathematical assumptions of the method and which compare computed results with experimental data to verify the underlying physical assumptions made by the method

    Vertical field-effect transistors in III-V semiconductors

    Get PDF
    Vertical metal-semiconductor field-effect transistors in GaAs/GaAlAs and vertical metal-oxide-semiconductor field-effect transistors (MOSFET's) in InP/GaInPAs materials have been fabricated. These structures make possible short channel devices with gate lengths defined by epitaxy rather than by submicron photolithography processes. Devices with transconductances as high as 280 mS/mm in GaAs and 60 mS/mm (with 100-nm gate oxide) for the InP/GaInPAs MOSFET's were observed

    Phased arrays of buried-ridge InP/InGaAsP diode lasers

    Get PDF
    Phase-locked arrays of buried-ridge InP/InGaAsP lasers, emitting at 1.3 µm, were grown by liquid phase epitaxy. The arrays consist of index-guided, buried-ridge lasers which are coupled via their evanescent optical fields. This index-guided structure makes it possible to avoid the occurrence of lower gain in the interchannel regions. As a result, the buried-ridge arrays oscillate mainly in the fundamental supermode, which yields single lobed, narrow far-field patterns. Single lobed beams less than 4° in width were obtained from buried-ridge InP/InGaAsP phased arrays up to more than twice the threshold current

    Heat-Capacity Measurements of Energy-Gap Nodes of the Heavy-Fermion Superconductor CeIrIn5 Deep inside the Pressure-Dependent Dome Structure of its Superconducting Phase Diagram

    Full text link
    We use heat capacity measurements as a function of field rotation to identify the nodal gap structure of CeIrIn5 at pressures to 2.05 GPa, deep inside its superconducting dome. A four-fold oscillation in the heat capacity at 0.3 K is observed for all pressures but with its sign reversed between 1.50 and 0.90 GPa. On the basis of recent theoretical models for the field-angle dependent specific heat, all data, including the sign reversal, imply a d{x^2-y^2} order parameter with nodes along [110], which constrains theoretical models of the pairing mechanism in CeIrIn5.Comment: To appear in Phys. Rev. Let

    Cd diffused mesa-substrate buried heterostructure InGaAsP/InP laser

    Get PDF
    A new type of buried heterostructure InGaAsP/InP lasers grown by a single-step liquid phase epitaxy on Cd diffused mesa substrate is described. These lasers exhibit excellent current and optical confinement. Threshold currents as low as 15 mA are achieved for a laser with a 2-µm-wide active region

    Euclidean-signature Supergravities, Dualities and Instantons

    Get PDF
    We study the Euclidean-signature supergravities that arise by compactifying D=11 supergravity or type IIB supergravity on a torus that includes the time direction. We show that the usual T-duality relation between type IIA and type IIB supergravities compactified on a spatial circle no longer holds if the reduction is performed on the time direction. Thus there are two inequivalent Euclidean-signature nine-dimensional maximal supergravities. They become equivalent upon further spatial compactification to D=8. We also show that duality symmetries of Euclidean-signature supergravities allow the harmonic functions of any single-charge or multi-charge instanton to be rescaled and shifted by constant factors. Combined with the usual diagonal dimensional reduction and oxidation procedures, this allows us to use the duality symmetries to map any single-charge or multi-charge p-brane soliton, or any intersection, into its near-horizon regime. Similar transformations can also be made on non-extremal p-branes. We also study the structures of duality multiplets of instanton and (D-3)-brane solutions.Comment: Latex, 50 pages, typos corrected and references adde

    Resummation and Shower Studies

    Full text link
    The transverse momentum spectra of the Z and Higgs bosons are studied, as probes of the consequences of multiple parton emissions in hadronic events. Emphasis is put on constraints, present in showers, that go beyond conventional leading log. It is shown that, if such constraints are relaxed, better agreement can be obtained with experimental data and with resummation descriptions.Comment: 6 pages, LaTeX, 3 eps figures, submitted to the proceedings of the Workshop on Physics at TeV Colliders, Les Houches, France, 26 May -- 6 June 200
    corecore