An Improved Panel Method for the

Volume II - User's Guide and Programmer's Document

E. N. Tinoco, P. Lu, and F. T. Johnson

An Improved Panel Method for the Solution of Three-Dimensional Leading-Edge Vortex Flows Volume II - User's Guide and Programmer's Document

E. N. Tinoco, P. Lu, and F. T. Johnson Boeing Aerospace Company
Seattle, Washington

Prepared for
Langley Research Center
under Contracts NAS1-15169 and NAS1-15275

N/SN

National Aeronautics
and Space Administration
Scientific and Technical Information Office

CONTENTS

Page
1.0 SUMMARY 1
2.0 INTRODUCTION 2
3.0 NOMENCLATURE 4
4.0 DESCRIPTION OF THE METHOD 7
4.1 Theoretical Model 7
4.2 Numerical Procedure 9
4.3 Solution Procedure 14
4.3.1 Quasi-Newton Scheme, ITFLOW 14
4.3.2 Least Squares Method, LSFLOW 15
5.0 USER'S INPUT GUIDE 20
5.1 Capabilities and Restrictions 20
5.2 Network Description 21
5.2.1 Network Nomenclature 21
5.2.2 Network Paneling 23
5.2.3 Network Abutments 23
5.2.4 Network Types and Uses 23
5.2.5 Network Geometry Preprocessors 36
5.3 STARTING SOLUTIONS 37
5.4 EXAMPLE NETWORK ARRANGEMENTS 43
5.4.1 Delta Wing without Near Wake 43
5.4.2 Delta Wing with Near Wake 43
5.4.3 Arrow Wing 46
5.4.4 Rectangular Wing 46
5.4.5 Wing with Cropped Tip 46
5.4.6 Asymmetric or Yaw Configurations 50
5.4.7 Wing Body Configuration 50
5.5 Input Format Specifications 50
5.6 Example Input Cases 66
5.7 Practical Instructions 66
6.0 OUTPUT GUIDE 70
6.1 Data Check Output 70
6.1.1 Free and Fed Sheet Printer Plots 70
(OPTIONAL, IPLOTP=1)
6.1.2 Mesh Point Data 70
6.1.3 Abutment Data 74
6.2 Solution Output 79
6.2.1 Iterative Results Summary 79
6.2.2 Detail Physical Quantities 80
6.2.3 Free and Fed Sheet Printer Plots 83
(OPTIONAL, IPLOTP=1)
6.2.4 Variables, Residuals, and Corrections 83
(OPTIONAL, ITVRCP=1)

CONTENTS (CONCLUDED)

Page
6.3 Diagnostic Printouts 86
6.3.1 Geometry Data (OPTIONAL, IGEOMP=1) 86
6.3.2 Singularity Distribution Definition 86
(OPTIONAL, ISINGP=1)
6.3.3 Control Point Data (OPTIONAL, ICONTP=1) 86
6.3.4 Edge Control Point Data (OPTIONAL, IEDGEP=1) 86
6.3.5 Singularity Grid Data (OPTIONAL, ISINGS=1) 86
6.3.6 Elapsed CPU Time (OPTIONAL, IPTIME=1) 86
6.3.7 Near Field/Far Field Information 92
(OPTIONAL, IPNIC=1)
6.3.8 Out-of-Core Solver Information 92
(OPTIONAL, IPSOLV=1)
92
6.4 TAPE 14 Save File
7.0 COMPUTER PROGRAM DESCRIPTION 97
7.1 Basic Program Structure 97
7.2 Description of Over lay Programs 97
7.2.1 OVERLAY (MAIN, 0,0) 97
7.2.2 OVERLAY (DATA, 1,0) 103
7.2.3 OVERLAY (NETGCS, 2,0) 104
7.2.4 OVERLAY (NETGCS, 2,1) 104
7.2.5 OVERLAY (NETGCS, 2,2) 105
7.2.6 OVERLAY (NETGCS, 2,3) 105
7.2.7 OVERLAY (AICGEN, 3,0) 106
7.2.8 OVERLAY (JACGEN, 4,0) 107
7.2.9 OVERLAY (SOLVER, 5,0) 108
7.2.10 OVERLAY (RESULT, 6,0) 109
7.3 File Usage 110
7.4 Common Block Definition 113
7.5 Linkage Map of Over lay Programs and Subroutines 123
7.5.1 Map of OVERLAY (MAIN, 0,0) 124
7.5.2 Map of OVERLAY (DATA, 1,0) 135
7.5.3 Map of OVERLAY (NETGCS, 2,0) 137
7.5.4 Map of OVERLAY (NETGCS, 2,1) 138
7.5.5 Map of OVERLAY (NETGCS, 2,2) 139
7.5.6 Map of OVERLAY (NETGCS, 2,3) 146
7.5.7 Map of OVERLAY (AICGEN, 3,0) 147
7.5.8 Map of OVERLAY (JACGEN, 4,0) 152
7.5.9 Map of OVERLAY (SOLVER, 5,0) 165
7.5.10 Map of OVERLAY (RESULT, 6,0) 167
REFERENCES 169
Page
1 Flow Mode] 8
2 Panel Model 10
3 Free/Fed Sheet Kinematics 12
4 Smith's Free/Fed Sheet Kinematics 13
5 Convergence Characteristics - Residuals 16
6 Convergence Characteristics - Geometry 17
7 Convergence Characteristics - Pressures 18
8 Network Nomenclature 22
9 Network Paneling Arrangements 24
10 Abutment Examples 25
11 Network Arrangement, Wing-Body Configuration 26
12 Parameter and Control Point Location Source/Analysis Network (NT=1) 28
13 Parameter and Control Point Location Doublet/Analysis Network (NT=2) 29
14 Parameter and Control Point Location Doublet/Design \#1 Network (NT=4) 30
15 Parameter and Control Point Location Doublet/Design \# 2 Network (NT=6) 31
16 Parameter and Control Point Location Doublet/Wake \# 1 Network (NT=8) 32
17 Parameter and Control Point Location Doublet/Wake \# 4 Network ($\mathrm{NT}=10$) 33
18 Parameter and Control Point Location Doublet/Wake \# 2 Network (NT=14) 34
19 Parameter and Control Point Location Doublet/Wake \# 3 Network ($N T=16$) 35
20 Initial Free-Sheet Geometry and Size of Fed Sheet for Various 'a' 38
21 Selection of Initial Geometry 40
22 Free and Fed Sheet Shape 41
23 Asymmetric Initial Sheet Shape 42
24 Delta Wing Network Arrangement 44
25 Delta Wing with Near Wake Network Arrangement 45
26 Arrow Wing Network Arrangement 47
27 Rectangular Wing Network Arrangement 48
28 Wing with Cropped Tip Network Arrangement 49
29 As ymmetric or Yaw Configuration Network Arrangement 51
30 Input Data Sequence 52
31 Input Specification $-A R=1.15$ Delta Wing 67
32 Input Specification - Arrow Wing 68
33 Printer Plot of Vortex Sheet 71
34 Mesh Point Data 73
35 Abutment List Printout 75
36 Abutment Check 76
37 Abutment Intersection List Printout 77
38 Update Index Arrays Printout 78
39 Force and Moment Summary 81
40 Physical Quantities Printout 82
41 Corrections, Variables, and Residuals 84
42 Mesh Point Data 87
43 Singularity Distribution Definition Data 88
44 Control Point Data 89
45 Edge Control Point Data 90
46 Singularity Grid Data 91
47 Basic Program Structure 98
48 F low Chart of Main Over lay Program A378 99

TABLES

Page
1 Program Size Restriction 53
2 Type and Use of Each Network of Arrow Wing-Body 27
3 Network Types and their Uses 54
4 Definition of Output Quantities 93
5 TAPE14 Format 96

1.0 SUMMARY

An improved panel method for the solution of three dimensional flow about wing and wing-body combinations with leading edge vortex separation is presented. The method employs a three-dimensional inviscid flow model in which the configuration, the rolled-up vortex sheets, and the wake are presented by quadratic doublet distributions. The strength of the singularity distribution, as well as shape and position of the vortex spirals, are computed in an iterative fashion starting with an assumed initial sheet geometry. The method calculates forces, moments, and detail surface pressure distributions. Improvements include the implementation of improved panel numerics for the purpose of eliminating the highly non-linear effects of ring vortices around doublet panel edges, and the development of a least squares procedure for damping vortex sheet geometry update instabilities.

The documentation is divided up into two parts:
Volume I Theory Document
Volume II User's Guide and Programmer's Document
Volume I contains a complete description of the method. A variety of cases generated by the computer program implementing the method are presented. These cases are of two types. The first type consists of numerical studies, which verify the underlying mathematical assumptions of the method and, moreover, show that the results are strongly invariant with respect to such user dependent input as wing panel layout, initial sheet shape, sheet rollup, etc. The second type consists of cases run for the purpose of comparing computed results with experimental data, and these comparisons verify the underlying physical assumptions made by the method.

Volume II contains instructions for the proper set up and input of a problem into the computer code. Program input formats and output are described. A description of the computer program and its overlay structure is also presented.

2.0 INTRODUCTION

A computer program has been developed for the solution of the subsonic, three-dimensional flow over wing-body configurations with leading-edge vortex separation. The program provides capabilities for calculating forces, moments, and detailed surface pressures on thin, sharp-edged wings of an arbitrary planform. The wing geometry is arbitrary in the sense that leading and trailing edges may be curved or kinked and the wing may have arbitrary camber and twist as long as in real flow it produces only a single well developed vortex system. The numerical methods employs an inviscid flow model in which the wing and the rolled-up vortex sheets are represented by continuous quadratic doublet sheet distribution. Furthermore, wing thickness may be represented by linear source distributions. The Kutta condition is imposed along all wing edges, and a zero force condition is imposed on the vortex core. An iterative scheme is applied to find the strengths of the doublet distributions as well as shape and position of the free vortex sheets spirals satisfying the nonlinear boundary conditions of the flow problem. The code includes two iterative solution procedures: (i) Quasi-Newton scheme and (ii) Least Squares Method. The least squares procedure for damping unstabilities was developed to alleviate convergence problems for certain cases using the standard Quasi-Newton iterative scheme.

The computer program is written in the CDC FORTRAN Extended (FTN4) language for the CDC Network Operating System (NOS). The program uses overlay structures and fourteen disk files which include the standard system files INPUT (TAPE5) for card reading and OUTPUT (TAPE6) for printing. The program has been checked out and run on NASA Langley Research Center's CDC CYBER series computers.

This method was originally developed by the Boeing Company under contracts NAS1-12185 and NAS1-13833. In order to upgrade the capability of the method and the code, a coordinated effort was launched involving contracts NAS1-15169 and NAS1-15275 from the Langley Research Center and work conducted for the Boeing Independent Research and Development Program. For purposes of completeness, the independent Boeing work is included in this documentation.

The documentation is divided into two parts:
Volume I - Theory Document
Volume II - User's Guide and Programmer's Document
The Theory Document (bound separately) contains a detailed description of the theoretical method. Also included are computed results which verify the underlying mathematical assumptions of the method and test theory comparisons which verify the underlying physical assumptions made by the method.

The remainder of this volume, the User's Guide and Programmer's Document, is organized as follows. In section 4 a brief description of the method is given for completeness. Section 5 provides instructions for the proper setup of analysis case. Network definitions and arrangements are discussed. The input formats are described followed by two example cases. Useful hints for practical use of these instructions are also included. Section 6 describes
the output formats. Discussions and examples are provided. Section 7 describes the computer programs. This concludes with a description of the program structure, the overlay program, the file structure, common block definition and a linkage map of the programs and subroutines.

3.0 NOMENCLATURE

free and fed sheet geometry parameter
aspect ratio
local span
chord
normal force coefficient
pressure coefficient
equations determining singularity parameters
force vector
equations determining vortex geometry parameters
equations penalizing panel twist
panel width
unit vector along vortex core or network junction
number of grid point rows on a network
free stream Mach number
surface unit normal vector
normal vector at panel center
number of grid point columns on a network
circular arc parameter
pressure
isentropic pressure
second-order pressure
field point
point on boundary B
nine canonical panel points
panel center

NOMENCLATURE (CONTINUED)

\vec{Q}_{s}, \vec{Q}_{t},	parametric coefficients defining H
S	local semispan used in Smith solution
(u, v, w)	perturbation velocity vector components
V_{∞}	free stream velocity magnitude
\vec{W}	perturbation mass flux vector
W	total mass flux vector
\vec{W}_{A}	average surface value of total mass flux vector
\hat{x}	unit vector along x-axis
x, y, z	Cartesian coordinates
α	angle of attack
β	$\sqrt{1-M_{\infty}{ }^{2}}$
γ	delta wing semi apex angle
Y	ratio of specific heats
Δ	jump in quantity across singularity surface or line
Δ	change in quantity from one iteration to the next
δ	fraction of Newton step
$\bar{\zeta}$	surface vorticity vector
θ	vortex system orientation angles
\oplus	all vortex systems geometry parameters
λ	vortex system scale factor
Λ	all singularity parameters
μ	doublet strength
\hat{n}	normal vector to panel edge
v	fed sheet scale factor
ρ	Newton iteration step size limiter

σ	source strength
ϕ	perturbation potential
$\left(\phi_{x}, \phi_{y}, \phi_{z}\right)$	gradient of perturbation potential
$\bar{\nabla}$	gradient operator
\otimes	vector cross product

4.0 DESCRIPTION OF THE METHOD

For the sake of completeness, a brief description of the method is included in this document.

4. 1 Theoretical Model

The flow model used in the Leading Edge Vortex (LEV) Program is illustrated in Figure 1. Flow about a highly swept wing at angle of attack separates at the leading edge and forms a spiral vortex. Studies (refs. 1,2) of the principal vortex indicate that its shape and strength are relatively independent of Reynolds number. This apparent lack of viscosity dependence suggests that the flow may be regarded as potential, with the free shear layer represented either as a vortex sheet or, equivalently, a doublet distribution supporting a discontinuity in tangential velocity. Since the position of the vortex sheet is not known a-priori, this results in a problem governed by the linear subsonic flow differential equation

$$
\begin{equation*}
\beta^{2} \phi_{\mathrm{xx}}+\phi_{\mathrm{yy}}+\phi_{\mathrm{zz}}=0, \beta^{2}=1-\mathrm{M}_{\infty}^{2} \tag{1}
\end{equation*}
$$

where ϕ is the perturbation velocity potential and by non-linear boundary conditions.

The essential elements of the present flow model are the configuration surfaces, the trailing wake, the sheet emerging from the wing leading edge and the tip (we call this the free sheet), and the rolled-up core or spiral region fed by the leading edge and tip vortex sheets (we call this the fed sheet).

The following boundary conditions are imposed on these elements:
o The configuration surface must be impermeable.

$$
\begin{equation*}
\left(\vec{w}_{A} \cdot \hat{n}\right)=0 \tag{2}
\end{equation*}
$$

where W is the average surface value of the total mass flux vector and n is the surface unit normal vector.
o The free sheet and wake cannot support a pressure difference and must form a stream surface.

$$
\begin{equation*}
\Delta c_{p_{2}}=0 \tag{3}
\end{equation*}
$$

where $\Delta C_{p_{2}}$ is the jump in the second'order pressure coefficient, see Section 6.2.2 for definition of C. Impermeable condition

$$
\begin{equation*}
\hat{\mathrm{n}} \cdot \overrightarrow{\mathrm{~W}}_{\mathrm{A}}=0 \tag{4}
\end{equation*}
$$

- DIFFERENTIAL EQUATION

$$
\left(1-M_{\infty}^{2}\right) \phi_{x x}+\phi_{y y}+\phi_{z z}=0
$$

- BOUNDARY CONDITIONS
- WING, BODY :

IMPERMEABLE

- WAKE, FREE SHEET:

IMPERMEABLE
ZERO PRESSURE JUMP

- FED SHEET:

ZERO TOTAL FORCE

- KUTTA CONDITION

FIGURE 1 FLOW MODEL

0 The fed sheet is an extension of the free sheet and feeds vorticity to the vortex core (modeled as a simple line vortex). The boundary condition governing fed sheet size and core orientation is that the total force induced on the fed sheet and core by the rest of the configuration be parallel to the core.

$$
\begin{equation*}
\hat{\ell} \otimes \Delta \overrightarrow{\mathrm{F}}=0 \tag{5}
\end{equation*}
$$

where $\hat{\ell}$ is the unit vector along the vortex core and $\Delta \vec{F}$ is the force.

The size of the fed sheet is chosen initially by experience or from the conical flow results of Smith (ref. 3).
o Kutta conditions are imposed along the appropriate leading, side, and trailing edges of the wing in the presence of free sheets emanating from these edges. The Kutta condition is controlled by the appropriate edge matching condition.

$$
\Delta \vec{\zeta} \cdot \hat{\ell}=0
$$

where $\vec{\zeta}$ is the surface vorticity vector and $\hat{\ell}$ is the unit vector along the junction.

The configuration impermeability condition, the free sheet pressure jump condition, and the Kutta edge conditions determine the solution of singularity strengths. The free sheet impermeability condition and the fed sheet zero force condition will determine the free and fed sheet positions.

In subsonic flow, compressibility is accounted for by use of the Goethert rule which is used to transform the problem into the equivalent incompressible problem for solution.

4.2 Numerical Procedure

This problem can be represent by the proper distribution of logically independent paneling networks, which satisfy either Neumann (analysis) or Dirichlet (design) boundary conditions. Shown in Figure 2 is a typical paneling scheme for a wing-body configuration. Hyperboloidal
(Hyperbolic-paraboloid) panels are used to ensure surface continuity. A continuous quadratic doublet distribution is used on the midplane to represent wing, wake, free and fed sheet networks. A linear surface source distribution can be used to represent the body and wing thickness if desired.

The main features of the numerical discretization and computational scheme are:

1) Geometry input for a network consists of a rectangular array of corner point coordinates. These corner points are fitted exactly by hyperbolic paraboloid patches (hyperboloidal panels). These exact

fits ensure surface continuity.
2) Discrete values of singularity strength are assigned to certain standard points on each network. A local distribution on surface singularity strength is obtained by fitting a linear source or quadratic doublet form to those discrete values in an immediate neighborhood by the method of least squares. An analysis type network is employed on the wing (geometry of the wing is specified), and a design type network of doublets simulates the free sheet (unknown free sheet geometry, zero pressure jump specified). In order to insure continuity of doublet strength between panels and networks, nine degree of freedom splines are used to describe the quadratic panel distributions.
3) Certain standard points on each network are assigned as control points, where boundary conditions are specified. These points include panel center points as well as edge abutment downwash points in the case of doublet networks. The latter serve to impose standard aerodynamic edge conditions automatically (e.g., the Kutta condition, zero potential jump at thin edges, continuity of singularity strength across abutting networks), in order to produce logical independence for each network. The number of boundary conditions on each network coincides with the number of assigned surface singularity parameters.
4) The induced potential and velocity integrals of the influence coefficient equations are all evaluated in closed form, although standard far field expansions are employed when the control point is sufficiently distant from the influencing panel.

Since the problem is non-linear, an iterative procedure must be used for solution. An initial guess must be made for the free and fed sheet position. Normally results from Smith's conical flow method are used for the initial guess, but the user can also input his own geometry. During the iterative solution the position and size of the free and fed sheet are updated until all the boundary conditions are satisfied. The standard free and fed sheet kinematics which allow this updating are shown in Figure 3. A cut normal to the longitudinal axis is shown. The wing panels, of course, remain fixed. The angle θ (theta) associated with the free sheet segments are free to change with the exception of the angle between the horizontal and fed sheets. The length of the free and fed sheet segments are controlled by the parameters λ (lambda) and the length of the fed sheet segments are further controlled by the parameters v (nu). These parameters as well as the panel singularity strengths μ (mu) are all updated simultaneously using a Newton correction scheme.

The above vortex system kinematics is, of course, only one of many possibilities. A good alternative is the kinematics of Smith (ref. 3) shown in Figure 4. Here, in contrast to the standard kinematics, angles
θ are fixed and lengths ℓ and core location are chosen as the free parameters. Both kinematics schemes will lead to the same converged solution. Preliminary studies indicate that Smith's kinematics may results in faster convergence.

FIGURE 3 FREE/FED SHEET KINEMATICS

FREE PARAMETERS: $\ell_{2}, \ell_{3}, \ell_{4}, \ell_{5}, Y_{C}, Z_{c}$ FIXED PARAMETERS: $\theta_{2}, \theta_{3}, \theta_{4}, \theta_{5}$

FIGURE 4 SMITH'S FREE/FED SHEET KINEMATICS

4.3 Solution Procedure

The boundary value problem of wings with leading edge vortex separation is nonlinear due to the fact that the shape of the free vortex sheet as well as its strength are unknown. The solution procedure must therefore be iterative. Two solution procedures are available in the LEV code, ITFLOW and LSFLOW.

4.3.1 Quasi-Newton Scheme, ITFLOW

The standard procedure ITFLOW uses a Quasi-Newton scheme for the iterative solution of the flow problem. The incompressible boundary conditions as derived from the compressible formulation by application of the Goethert rule, can be written symbolically in terms of the following equations

$$
\begin{align*}
& F(\Lambda, \Theta)= \begin{cases}\left(\vec{W}_{A} \cdot \hat{n}\right)=0 & \text { Wing-body } \\
\Delta C_{P_{2}}=0 & \text { Free sheet and wake } \\
\Delta \vec{\zeta} \cdot \hat{\ell}=0 & \text { Kutta condition }\end{cases} \tag{6}\\
& G(\Lambda, \Theta)=\left\{\begin{array}{cl}
\left(\vec{W}_{A} \cdot \hat{n}\right)=0 & \text { Free sheet } \\
\hat{\ell} \otimes \Delta \vec{F}=0 & \text { Fed sheet }
\end{array}\right.
\end{align*}
$$

where Λ denotes all the singularity parameters and \oplus denotes all the geometric degrees of freedom. The function F symbolizes the impermeable boundary condition of the wing and body, equation (2), zero pressure jump across the free sheet and wake, equation (3), and the Kutta condition. The function G represents the stream surface boundary condition of the free sheet, equation (4), and the global boundary condition of zero net force acting on the fed sheet and the line vortex, equation (5).

Starting with an assumed initial geometry (i.e., a given set of parameters Θ), the initial singularity strength parameters Λ are obtained using the set of equations (6) in which $\Delta C_{P_{2}}$ has been replaced by the linear form of the pressure equation (see section 6.2.2).

To obtain a solution, two phases of iterative procedure are performed alternatively. The first phase, which is called subiteration, merely produces convergence to the nonlinear $\Delta C_{P_{2}}$ equation associated with the pressure jump boundary condition on the free sheet. The spatial location of the free sheets is not updated and the aerodynamic influence coefficients remain the same throughout the iteration. The Jacobian matrix consisting of only the small perturbation of the functions F due to the singularity strength parameters ($\partial \mathrm{F} / \partial \Lambda$) can be easily calculated.

$$
\begin{equation*}
\frac{\partial F}{\partial \Lambda} \quad \Delta \Lambda=-\rho F \tag{8}
\end{equation*}
$$

F is known and denotes the error residual in the satisfaction of the boundary conditions of equation (6) at intermediate steps in the iteration cycle. ρ represents symbolically the step size scaling parameter δ which is a positive number less than 1 and is chosen small enough (by the code) to ensure a decrease in F. Newton's method with this controlled step size is used and convergence is usually achieved in 2 or 3 iterations.

For the second phase, the boundary conditions that the free sheet form a streamsheet, and the zero force condition on the fed sheet are introduced. In general the initial guess, Θ, will not be correct and a full iteration procedure will begin in which the free and fed sheet geometry will be updated. This will require the recalculation of those aerodynamic influence coefficients affected by the perturbation of the free and fed sheet geometry.

Small perturbations of equations (6) and (7) from the initial "starting solution" result in a set of linear equations governing the perturbation variables Λ, Θ.

$$
\left(\begin{array}{ll}
\frac{\partial F}{\partial \Lambda} & \frac{\partial F}{\partial \Theta} \tag{9}\\
\frac{\partial G}{\partial \Lambda} & \frac{\partial G}{\partial \Theta}
\end{array}\right)\binom{\Delta \Lambda}{\Delta \Theta}=-\rho\binom{F}{G}
$$

As in equation (8) F and G are known and denote the error residual in satisfaction of the boundary conditions at intermediate cycles. These equations are solved iteratively by a Quasi-Newton method with controlled step size (see Appendix G of Volume I). The calculation of a complete Jacobian (left hand side matrix) which includes the effect of the perturbation of geometry, Θ, is quite expensive. A new Jacobian is computed after every three iterations in the iterative process. Five to six iterations are generally sufficient to obtain convergence.

The convergence history of a typical solution is illustrated in Figures 5, 6 and 7. Figure 5 illustrates the normal force and residual history. The subiteration is now shown. Once convergence for the subiteration is achieved the complete boundary conditions are introduced and the full iteration begins. The solution should not be considered complete until the residual is less than 10 . The case shown had a particularly slow convergence with the Jacobian update being made only every 5 iterations. More typical cases tend to converge in 5 to 6 iterations with Jacobian updates occurring every 3 iterations. Figure 6 shows the progress of the free sheet geometry at one station during the iteration. Figure 7 shows the corresponding pressure distribution.

4.3.2 Least Squares Method, LSFLOW

An alternate iteration procedure is also available for those cases for which the Quasi-Newton scheme, ITFLOW, fails to converge. In these cases local flow anomalies on the free sheet may cause instabilities which destroy convergence everywhere in the solution. These instabilities cause excessive panel twist which propagates throughout the free sheet.

delta wing with near wake

STARTING SOLUTION

1	1	1	1	1	1	1	1	1
2	1	0	-1	-2	-3	-4	-5	-6
		LOG (SUM OF SQUARES OF RESIDUALS)		-7				

FIGURE 5 CONVERGENCE CHARACTERISTICS - RESIDUALS

FIGURE 6 CONVERGENCE CHARACTERISTICS - GEOMETRY

FIGURE 7 CONVERGENCE CHARACTERISTICS - PRESSURES

One of the simplest methods of damping this instability whenever it arises is to limit excessive panel twist. This leads to an additional equation that all free sheet panels be untwisted (flat),

$$
K(\Theta)=\begin{align*}
& \vec{n} \cdot \vec{Q}_{s t} \tag{10}\\
& (\vec{n} \cdot \vec{n})^{3 / 4}
\end{align*}=0
$$

where $\vec{n}_{=}=\vec{Q}_{s} \otimes \vec{Q}_{t}$ and \vec{Q}_{s}, \vec{Q}_{t} and $\vec{Q}_{\text {st }}$ are hyperboloidal panel defining quantities. Equation (10) combined Sth equations (6) and (7) creates an overdetermined system of equations for $\Lambda \quad$ (singularity parameters) and Θ (geometric degrees of freedom).

The system is solved in a least squares sense after suitable normalization to account for dimensional differences as well as desired weighting. Equation (10) governing panel twist is not weighted heavily since a free sheet made up entirely of flat panels may not in general be a good approximation to a stream surface. The instabilities produced by a local flow anomaly are severe enough that a very small penalty on panel twist force relaxation of the boundary condition causing the local anomaly.

The procedure for solving the overdetermined equation set is iterative as before. At the beginning of an iteration, equation (6) is solved for Λ as a function of the current \Leftrightarrow using Newton's method with controlled step size, i.e.,

$$
\begin{equation*}
\frac{\partial F}{\partial \Lambda} \quad \Delta \Lambda=-\rho F \tag{11}
\end{equation*}
$$

This is essentially the subiteration which was discussed previously in Section 4.3.1. Upon obtaining convergence, a new estimate for is calculated by solving the equation

$$
\left(\begin{array}{ll}
\frac{\partial G}{\partial \Lambda} & \frac{\partial f}{\partial \Theta}+\frac{\partial G}{\partial \Theta} \tag{12}\\
& \frac{\partial K}{\partial \Theta}
\end{array}\right)(\Delta \Theta)=-\rho\binom{G}{K}
$$

in a least square sense, where the Jacobian on the left is evaluated at the point $\quad \Lambda=f(\Theta)$ as determined from (11) and $\partial f / \partial \Theta$ is calculated from

$$
\begin{equation*}
\frac{\partial F}{\partial \Lambda} \frac{\partial f}{\partial \Theta}+\frac{\partial F}{\partial \Theta}=0 \tag{13}
\end{equation*}
$$

We assume here that G and K have been normalized appropriately.
When using the Least Squares Method, a new Jacobian is computed after every two iterations. If cycle of step size reduction exceeds 3 (see Appendix G of Volume I), then a new Jacobian will also be formed.

5.0 USER'S INPUT GUIDE

In this section instructions are given to enable the user to properly set up a flow model and prepare the program input data. Since proper formulation of the flow model is paramount in obtaining a solution, considerable description of the networks and their characteristics is given. Several examples are given illustrating the proper network placement for various configuration planforms. A complete listing of the Input Formats and two example cases are also included.

5.1 Capabilities and Restrictions

The Leading Edge Vortex (LEV) program is a versatile tool for calculating flows about a class of configurations with leading edge vortex separation. The wing geometry may be arbitrary in the sense that leading edge and trailing edge may be curved or kinked and the wing may have arbitrary camber and twist. The limiting factor on planform shape is that only a single primary vortex system be formed. Configurations for which a strong well defined vortex system does not exist in real flow will probably encounter convergence difficulties during the solution. This includes configurations with less than 60 leading edge sweep, configurations with discontinuities in the leading edge which will promote the formation of more than one vortex system, and solutions at low angles of attack where a well defined vortex has not yet formed in real flow.

Planforms for which successful solutions have been obtained include delta, arrow, and diamond wings with pointed or cropped wing tips, and also gothic and ogee planforms. Several of these examples may be found in Volume I - Engineering Document, Sections 6 and 7. A variety of camber and twists have also been successfully analyzed. Several of these examples may be found in reference 4. Again the key requirement in any of these solutions is that a single well formed vortex exist in the real flow. (Note that it may be possible to obtain a solution on a configuration with more than one vortex system on each side of the plane of symmetry as long as the systems never coalesce. However, this capability has not been explored at the time of this writing).

The program has a symmetry condition option (NSYMM, card 9) which must be set in the input. Normally solutions are obtained assuming a plane of symmetry. For as ymmetric configurations or configurations at yaw the symmetry condition must be defeated and both sides of the configurations specified: (For these cases two vortex systems will be specified). The network setup for asymmetric cases will be discussed in section 5.4.6, results are shown in Figure 23, section 7.1.2, Volume I - Theory Document.

An often overlooked capability of the LEV program is to analyze attached flow models. The setup of such models is identical to that of the separated case except that the free and fed sheet networks are deleted. Use of this option allows direct comparisons between solutions that assume attached or separated flow. An example of this type comparison is shown in Figure 28 b in Volume I - Theory Document.

The program is valid only for subsonic Mach numbers. The Gothert rule is applied to transform the problem to the equivalent incompressible case for solution. The flow model size restrictions are given in Table 1 which appears in section 5.5. Restrictions are given both for the Quasi-Newton scheme (section 4.3.1) and for the Least Squares method (section 4.3.2). Note that the number of singularity strength parameters does not correspond to the number of panels. This is because in the higher order panel method used there is not a one-to-one correspondence between singularity unknowns and panels. Control point placement on the various types of networks which corresponds to the number of singularity unknowns will be illustrated in the next section. Also note that for the Quasi-Newton scheme the number of singularity parameters (which could be used for an attached flow solution) is greater than the combined number of singularity parameters, panel orientation angles, and geometry parameters which can be used for a separated flow solution.

5.2 Network Description

5.2.1 Network Nomenclature

A network is defined as a portion of the boundary surface on which a certain distribution of source or doublet strength is specified, together with properly posed analysis (Neumann) or design (Dirichlet) boundary conditions. The true surface is assumed to have continuous position, slope and curvature. Discontinuities in these quantities are therefore limited to network edges. The networks are logically independent in that each network contributes as many equations as unknowns to the overall boundary value problem, hence networks can be added or dropped without total reformulation of the problem.

Every network is specified by giving the coordinates of an array of grid points which is basically quadrilateral as illustrated in Figure 8. That is, the array consists of M "rows" or grid points which each contain N points. N is the number of columns of grid points. A triangular shaped network is achieved by allowing one edge of the quadrilateral collapse into a single point. This is accomplished by letting a single grid point belong to several rows or columns.

The sense of M and N defines the orientation of a paneling network. Side numbering, corner numbering, grid point indexing and outward direction are all defind by the sense of M and N. The vector N corresponds to a column of grid points directed in the direction of increasing points, while the vector M corresponds to a row of grid points in the direction of increasing points. The vector NXM is directed out of the surface. The outward sense of a network is important when using source type networks. The outward side of a source network must always bound the flow. In setting up the geometry for a solution it is also important to know the proper side numbering nomenclature. Wake and design type networks such as those used for the free and fed sheets and the trailing wake demand a specific orientation when being attached to the configuration type networks (side 1 must attach). Figure 8 illustrates the proper nomenclature for a network. Several data preprocessors are included in

FIGURE 8 NETWORK NOMENCLATURE
the LEV code to aid the user in defining the appropriate network input data. Use of these preprocessors will be discussed in a later section.

5.2.2 Network Paneling

Generally two types of network paneling may be employed, although other arrangements are possible. The two basic types illustrated in Figure 9 are conical paneling and streamwise paneling. Conical paneling is used mainly for wing, free and fed sheet networks, while streamwise paneling used mainly for wake networks. Streamwise paneling may also be used on wing networks but may require the use of the more expensive least squares method, LSFLOW to obtain a solution. Further discussion on the use of streamwise paneling on wing networks is given in sections 5.2 and 6.2 in Volume I - Theory Document.

5.2.3 Network Abutments

A typical problem will consist of several different networks, representing different types of singularity and boundary conditions. Control points located at the junction of two doublet networks are assigned to match singularity strength across the junction. If only one control point exists, doublet value is matched. If there are two opposing control points the component of vorticity along the junction is also matched.

Proper edge matching is dependent on correct abutments between networks. In order to ensure correct abutments it is absolutely necessary that network paneling match identically along adjacent edges. This means that adjacent panel grid points across an abutment must be identical to the accuracy of the computer. An additional restriction is that network abut along complete edges, i.e., their network corner grid points must coincide. Examples of acceptable and unacceptable paneling abutments are shown in Figure 10.

Because of the necessity of achieving proper abutments between networks before a valid solution may be obtained, a data check procedure (card 15, \$DATA CHECK) has been incorporated into the program. It is imperative that the data check be performed to confirm proper abutment between networks before committing a problem to solution. A discussion of the abutment data check output will be given in section 6.1.3.

5.2.4 Network Types and Uses

The various network types and their uses are illustrated through the following example. The paneling scheme of Figure 2 is schematically shown in Figure 11. The network type used for each network is summarized in Table 2. Several different singularity types and boundary conditions are necessary to properly specify the problem. In the present program eight network types are available for modeling a given configuration along with its separated vortex system. Each network type represents a different source or doublet distribution accompanied by a properly posed set of boundary conditions. These network types are distinguished by the index NT. A brief description of each available type is presented below.

FIGURE 9 NETWORK PANELING ARRANGEMENTS

EXAMPLE 2

EXAMPLE 3 UNACCEPTABLE ABUTMENT
PARTIAL ABUTMENT ALONG SIDE 1

FIGURE 10 ABUTMENT EXAMPLES

TYPE AND USE OF EACH NETWORK OF ARROW WING-BODY
TABLE 2

Network Sequence Number	Network Type	Use
1	$N T=1$	Upper Forebody
2	$N T=1$	Lower Forebody
3	NT $=1$	Upper Midbody
4	$N T=1$	Lower Midbody
5	NT $=1$	Upper Aftbody
6	$N T=1$	Lower Aftbody
7	$N T=2$	Wing
8	$N T=2$	Wing
9	$N T=8$	Carry Over Lifting System
10	$N T=8$	Carry Over Lifting System
11	$N T=10$	Wake of Carry Over System
12	$N T=6$	Near Wake
13	$N T=8$	Trailing Wake of Near Wake
14	$N T=4$	Free Sheet
15	$N T=14$	Fed Sheet
16	$N T=4$	Free Sheet
17	$N T=14$	Fed Sheet
18	$N T=16$	Wake of Free Sheet
19	$N T=10$	Wake of Fed Sheet

NT = 1: Source/Analysis Network
This network is used primarily to represent the exterior surfaces of thick wings and bodies. See network numbers 1 to 6 of Figure 11 as examples.

When inputting source type networks one should always be careful that the surface normal ($N \times M$) points out into the flow.

The singularity parameters and control point locations for the Source/Analysis network are illustrated in Figure 12.

FIGURE 12 PARAMETER AND CONTROL POINT LOCATION. SOURCE/ANALYSIS NETWORK

NT = 2: Doublet/Analysis Network
This network is used primarily to represent a thin wing and is placed on the camber surface of the wing (e.g., networks 7 and 8 of Figure 11). This network type is also used as a lifting system for a thick wing. Here the network is placed on the camber surface in the same fashion as for a thin wing. However, Source/Analysis (NT = 1) networks are then added to form the upper and lower wing surfaces.

The singularity parameter and control point locations for the Doublet/Analysis networks are illustrated in Figure 13.

FIGURE 13 PARAMETER AND CONTROL POINT LOCATION DOUBLET/ANALYSIS NETWORK (NT = 2)

NT = 4: Doublet/Design \#1 Network
This network is used as a free sheet, that is, a sheet which has $\Delta C p=0$ boundary conditions and is updated to be a stream surface. (Cp here is calculated using the second order formula, equation 18 , section 6.2.2.) See networks 14 and 16 of Figure 11 as examples. These examples illustrate two important rules concerning the corner point input of a free sheet network. First, the apex or collapsed side of a free sheet must be side 4. Secondly, the side adjoining the wing (or adjoining another free sheet attached to the wing) must be side 1.

The singularity parameter and control point locations for the Doublet/Design \#1 network are illustrated in Figure 14.

FIGURE 14 PARAMETER AND CONTROL POINT LOCATION DOUBLET/DESIGN \# 1 NETWORK ($N T=4$)

NT = 6: Doublet/Design \#2 Network
This network is used for a wake in place of a type NT $=8$ network when the approximation of the linearized pressure formulas is deemed insufficient (see discussion in section 7.1.1, Vol. 1). The boundary condition $\Delta C p=$ 0 (where Cp is calculated using the second order formula, equation 18 , section 6.2.2), is applied on each panel. In contrast to the type NT $=4$ network, this network must remain fixed. See network 12 of Figure 11 as an examaple. If an additional wake is attached to a type 6 network as in Figure 11, the wake should adjoin side 3 of the type 6 network.

The singularity parameters and control point locations for the Doublet/Design \#2 network are illustrated in Figure 15.

NT = 8: Doublet/Wake \#1 Network
This network is used as a wake behind a wing. It satisfies a built-in boundary condition, namely that $\Delta C p=0$, (where $C p$ is calculated using the linearized pressure formula equation 16, section 6.2.2). This is achieved by making doublet strength constant along columns (which are presumed to be in the stream direction). See network 13 of Figure 11 as examples. One rule concerning corner point inputs for an NT $=8$ network is that side 1 must always be placed next to the wing or near wake trailing edge.

A type 8 network is also used as a carry-over lifting system which extends the wing lifting system into the body (see networks 9 and 10 in Figure 11). For this purpose the type 8 network is turned sideways. Note that side 1 must adjoin the wing lifting system root edge.

The singularity parameters and control point locations for the Doublet/Wake \# 1 networks are illustrated in Figure 16.

FIGURE 16 PARAMETER AND CONTROL POINT LOCATION DOUBLET/WAKE \#1 NETWORK (NT = 8)

NT = 10: Doublet/Wake \#4 Network
This network is used as a wake behind a carry-over lifting system or a fed sheet. It has constant doublet strength and therefore, carries no shed vorticity. As examples see networks 11 and 19 of Figure 11 . Note that side 1 is always placed next to the carry-over lifting system or fed sheet trailing edge.

The singularity parameter and control point locations for the Doublet/Wake \#4 network are illustrated in Figure 17.

NT = 14: Fed Sheet Network (Doublet/Wake \#2)

This network is of the same basic construction as the type NT $=8$ network but has special panel center and terminated edge velocity evaluation points for the calculation of the total force on the network. See networks 15 amd 17 of Figure 11 as an example. Note that side 1 must adjoin the free sheet.

The singularity parameters and control point locations for the Fed Sheet network are illustrated in Figure 18.


```
NT = 16: Doublet/Wake 3 Network
```

This network is used as a wake behind a free sheet. It is just like a Doublet/Wake \#1 network (type 8) except that its degrees of freedom are associated with its edge corner points so that it can be used behind a free sheet. It satisfies a built-in boundary condition, namely that $\Delta \mathrm{Cp}$ $=0$ (where $C p$ is calculated using the linearized pressure formula, equation 16). This is achieved by making doublet strength constant along columns (which are presumed to be in the stream direction). See network \#18 of Figure 11 as an example. Note that side 1 is always placed next to the free sheet trailing edge.

The singularity parameter and control point locations for the Doublet/Wake \#3 networks are illustrated in Figure 19.

FIGURE 19 PARAMETER AND CONTROL POINT LOCATION DOUBLET/WAKE \#3 NETWORK (NT = 16)

5.2.5 Network Geometry Preprocessors

In order to facilitate the definition of the various networks in the program input several geometry data preprocessors have been included in the code. These preprocessors will greatly simplify the user's task by generating the network grid point geometry for most cases. A preprocessor option (SPOINTS) is also included to allow completely general grid point definition by some outside source. The following preprocessors are available within the code.

> \$POINTS
> \$QUADR ILATERAL \$GOTHIC \$TRAILING WAKE
> \$VORTEX

In addition, a sixth preprocesor called \$CAMBERED WING is also available for use with \$QUADRILATERAL or \$GOTHIC for the simplified input of cambered or twisted surfaces.

A description and discussion of the various preprocessors follows.
\$POINTS - This option allows the input of a user defined array of XYZ points in 6E10.0 format. It can be used to define any type of network and is the most general input for planform and camber shapes. The input formats for BPOINTS are given in section 5.5. Users may find some difficulty in obtaining proper abutments between networks defined using \$POINTS and networks defined using \$GOTHIC or \$QUADRILATERAL. This may occur because of the requirement for adjacent grid points across abutments being identical not being met. The abutments may appear identical in the program printout but it must be realized that the grid point coordinates calculated by \$GOTHIC or \$QUADRILATERAL may have more significant figures than shown in the output format. In such cases it may be convenient to dispose the network geometry (which is saved on TAPE14) as punch card output, and reinput the networks using \$POINTS.
\$QUADRILATERAL - This option allows the definition of a network by specifying the network corner points and the internal percentage arrays to define the paneling distribution. This option is useful in defining simple wing planforms and design wakes. The input formats for \$QUADRILATERAL are given in section 5.5. \$CAMBERED WING may be used with this option to define a camber and a twist for the network. \$QUADRILATERAL may be used to generate any type network.
\$GOTHIC - This option allows the definition of a network with a straight or curved edge. A longitudinal array of XYZ points is input which defines both the edge geometry and the longitudinal panel spacing. A percentage array defines a lateral panel spacing. The input formats for \$GOTHIC are given in section 5.5. \$CAMBERED WING may be used with this option to define a camber and twist for the network. \$GOTHIC may be used to generate any type network.
\$TRAILING WAKE - This option is used to define a simple network paneling which consists of a single row of panels. This network attaches to another specified network edge and extends straight back (parallel to the X-axis) to a specified distance. This option is used exclusively to generate wake networks. The network and edge to which the wake attaches is defined to ensure a proper abutment. The input formats for \$TRAILING WAKE are in section 5.5.

GVORTEX - This option will automatically generate a free and fed sheet network and their associated trailing wakes. The shapes of the free and fed sheet networks are based on Smith's conical results which are discussed in section 5.3. The network edge to which the free sheet attaches is defined to assure proper edge abutment. More than one set of free and fed sheet networks may be specified in tandem in order to satisfy the edge abutment constraints when more than one network has been used to define the wing. This option may only be used to define free ($N T=4$) and fed ($N T=14$) sheet (and associated wake) networks. The input formats for \$VORTEX are given in section 5.5.
\$CAMBERED WING - This option is used in conjunction with \$GOTHIC or \$QUADRILATERAL to generate network goemetry for cambered or twisted surfaces. Camber lines can be defined independent of the network arrays to define a 3-D cambered surface. Linear spanwise interpolation is used to generate the cambered surface at the network grid points.
\$CAMBERED WING can also be used to generate conical camber of the form used by Wentz (ref. 5) or conical camber where the wing is a portion of a circular arc.

5.3 Starting Solution

The iterative process used in the solution of the leading edge vortex problem required an initial guess for the free and fed sheet goemetry. A reasonable guess may be based on the conical solution of Smith (ref. 3). Smith's results are reproduced in Figure 20, which shows the shape of the free sheet and the size of the fed sheet for various values of the parameter "a". This parameter is defined as

$$
\begin{equation*}
a=\frac{\alpha}{\tan \gamma} \tag{14}
\end{equation*}
$$

where $\boldsymbol{\alpha}$ denotes the angle of attack in radians and γ is one-half of the apex angle of a delta wing. The sheet geometries of Figure 20 represent

FIGURE 20 Initial free-sheet geometry and size of FED SHEET FOR VARIOUS 'a'
transverse cuts through the configuration normal to the wing surface. The y, z-coordinates are nondimensionalized by the wing semispan s. The locations of the line vortex along the terminated edge of the fed sheet are given for several values of a $(0.2 \leq a \leq 3.0)$ and are connected by a dashline. The straight line between the last point on the free sheet and the line vortex is the trace of the fed sheet. An example is shown for "a" = 1.4.

Smith's results are available within the LEV program through a network preprocessor called \$VORTEX. Here Smith's solution in tabulated form is used to form the network goemetry for the initial guess on the free and fed sheet shape. Figure 21 illustrates how an initial free-sheet geometry is obtained for a nonconical wing geometry. For this purpose the assumption is made that initially the shape of the free sheet at a particular chordwise station is the same as that of a certain delta wing. This delta wing is locally equivalent to the considered nonconical wing geometry and is defined as a wing that has the same apex position and the same local semispan at that chordwise station where the initial free-sheet geometry is to be computed. Thus, the parameter a can be calculated at each transverse cut for a given angle of attack and a given angle $\boldsymbol{\gamma}=\operatorname{arc}$ $\tan (s / x)$. Linear interpolation of Smith's data provides the desired initial free-sheet geometry for a chosen number of free-sheet panels. All free-sheet segments of a transverse cut ($y, z-p l a n e$) have approximately the same chord length.

The described procedure also provides the size of the fed sheet at all geometry defining transverse cuts. During the iteration process the shape of the free and fed sheet may change dramatically as shown in Figure 22. Here a transverse cut through the free and fed sheet at the trailing edge of an aspect ratio 2.0 delta wing is shown. The initial guess is generated by the $\$$ VORTEX preprocessor based on Smith's conical solution. The converged position shows considerable growth of the free and fed sheet.

It should be emphasized that Smith's conical data provide only the initial free-sheet geometry. This is a convenient choice and a good guess for wing geometries that are not too different from flat delta wings. The computed doublet distributions and the sheet geometries computed in subsequent cycles of the iteration procedure are, in general, not conical.

The choice of initial and fed sheet shape is in general not critical to the converged solution. However, the choice will affect the number of iterations necessary for a solution to achieve convergence and may preclude convergence in some cases. Figure 23 illustrates a case in which an asymmetric initial guess was used. Eight iterations later, the solution had converged to a symmetric solution.

Initial guesses other than those based on the Smith's results can be used. The most general option available is the use of the SPOINTS preprocessor. \$POINTS allow a network definition by xyz panel corner points, which gives the user complete freedom in specifying free and fed sheet shape. Sometimes it is desirable only to grow the Smith guess in order to increase the clearance between the fed sheet termination and the

FIGURE 21 SELECTION OF INITIAL GEOMETRY

FIGURE 22 FREE AND FED SHEET SHAPE

a. VORTEX SYSTEM GEOMETRY

FIGURE 23 ASYMMETRIC INITIAL SHEET SHAPE
wing surface (i.e., on a highly cambered wing). This may be accomplished within the 8 VORTEX preprocessor by use of the APC parameter on card V5. APC is an increment to the "a" parameter of equation 14. A positive value for APC will result in a larger free and fed sheet. In general it is easier for a large free sheet/fed sheet to contract to a converged position than for a small initial guess to grow into a converged position.

5.4 Example Network Arrangements

A series of examples illustrating the proper network arrangement for various configurations are presented. The purpose of these examples is to aid the user in the proper use and placement of the various types of network in formulating a flow model. These examples do not necessarily represent the only possible modeling for the various configurations. In explaining these various network arrangements it is of particular importance to note the network orientation. For those network for which the orientation is important, network side number one has been identified along with its M and N vector orientation.

5.4.1 Delta Wing Without Near Wake

A delta wing without a near wake is about the simplest model for which a leading edge solution can be obtained. This model is in general not a good model because of the inadequacy of the doublet/wake 1 ($N T=8$) network in satisfying the Kutta condition (see section 7.1, Vol. 1 - Theory Document). Its use, if at all, should be limited to delta wings of aspect ratio less than 1.0 and angles of attack greater than 15 .

The network formulation schematically is shown in Figure 24 with the vortex system rolled out flat in the plane of the wing. The flow model is made up of: 1, a doublet/analysis ($\mathrm{NT}=2$) network for the wing; 2, a doublet/wake \#1 ($N T=8$) network for the wake from the wing; 3, a doublet/design \#1 ($N T=4$) network for the free sheet; 4, a doublet/design \#3 ($\mathrm{NT}=14$) network for the fed sheet; 5, a doublet/wake \#4 ($\mathrm{NT}=16$) network for the wake from the free sheet; and 6, a doublet/wake\# 2 ($N T=10$) network for the network for the wake from the fed sheet.

In setting up this model \$POINTS, \$QUADRILATERAL, or \$GOTHIC could be used to define the wing network, STRAILING WAKE to define the wake from the wing network and \$VORTEX to define the remaining four networks representing the free and fed sheets and their associated wakes.

5.4.2 Delta Wing With Near Wake

This is the recommended model for most wing planforms. The network arrangement is shown in Figure 25. The near wake is actually a doublet/design \#2 (NT=6) network, which satisfies the boundary condition
$\Delta C p=0$ where $C p$ is calculated using the second order formula, equation 17, section 6.2.2. Unlike the simpler doublet/wake \#1 ($N T=8$) network which only satisfies the linear $\Delta C p=0$ boundary condition, the design wake network accommodates a spanwise shedding of vorticity at the trailing edge which is necessary to properly satisfy the Kutta condition.

NETWORK	TYPE	USE
1	NT $=2$	WING
2	8	WAKE
3	4	FREE SHEET
4	14	FED SHEET
5	16	FREE SHEET WAKE
6	10	FED SHEET WAKE

FIGURE 24 DELTA WINg NETWORK ARRANGEMENT

NETWORK	TYPE	USE
1	NT $=2$	WING
2	6	NEAR WAKE
3	8	WAKE
4	4	FREE SHEET
5	14	FED SHEET
5	4	FREE SHEET
6	14	FED SHET
7	16	FREE SHEET WAKE
8	10	FED SHEET WAKE

FIgURE 25 DELTA WINg WITH NEAR WAKE NETWORK ARRANGEMENT

Studies (Section 7.1.1, Vol. I - Theory Document) have shown that the design wake can be as short as 0.1 root chords and only two rows of panels deep (in the x-direction). The planform may correspond to a simple extension of the wing planform or may increase the sweep of the edge from which the free sheet abuts. It is not recommended that the free sheet edge become parallel to the x-axis as this can make convergence more difficult. The free and fed sheets must extend to the end of the near wake. Because of the requirement that abutments occur along complete network edges it is necessary to split the free and fed sheets into two segments as shown in Figure 25.
\$POINTS, \$QUADRILATERAL, or \$GOTHIC may be used to generate the wing and near wake geometry. \$TRAILING WAKE will take care of the wake network number 3 in the example. \$VORTEX can be used to generate the remaining networks, numbers 4, 5, 6, 7, 8 and 9. Two calls to 8 VORTEX will be necessary to generate the six networks. First, networks 4 and 5 will be generated without trailing wakes (KW=0, Card V2). Then networks 6, 7, 8 and 9 can be generated. NATF (Card V4) will assure connection of networks 6 and 7 to networks 4 and 5. JNAT (Card V5) will be referenced to the vortex apex network (Network 4) to assure a proper starting solution.

5.4.3 Arrow Wing

A network arrangement for an arrow wing planform is shown in Figure 26. The need to split the wing, free and fed sheets into two networks depends on the type of paneling used to define the wing. If a conical type paneling (see Figure 9, example 2) is used, then the split in the wing, free, and fed sheets is necessary as shown in Figure 26 and is due to the constraint that networks abut along entire edges (section 5.2.3). If a steamwise paneling scheme (see Figure 9, example 1) is used then the wing and free and fed sheets could be single networks.

5.4.4 Rectangular Wing

A network arrangement for a rectangular wing is illustrated on Figure 27. Limited studies (section 7.2 - Vol. I - Theory Document) have not indicated a need for a design wake on rectangular wings. Some problems have been encountered with the convergence on rectangular wings associated with the starting solution generated by $8 V O R T E X$ when $A P C=0$. (card V5). Setting APC $=0.5$ to 1.0 helped to avoid the convergence problems.

5.4.5 Wing With Cropped Tip

Figure 28 shows a network arrangement for a wing with a cropped wing tip. The presence of the tip does not by itself introduce any new network arrangement procedures. The arrangement shown assumes that the tip has been defined as part of the leading edge so that the leading edge and the tip together form only one edge. Conical type paneling would then be necessary and could be defined by use of \$GOTHIC. Planforms with tips cropped parallel to the x-axis have experienced convergence difficulty using the standard ITFLOW iteration procedure, necessitating use of the more expensive LSFLOW procedure.

NETWORK	TYPE	USE
1	NT $=2$	WING
2	2	WING
3	4	FREE SHEET
4	14	FED SHEET
5	4	FREE SHEET
6	14	FED SHEET
7	16	FREE SHEET WAKE
8	10	FED SHEET WAKE
9	6	NEAR WAKE
10	18	WAKE

FIGURE 26 ARROW WING NETWORK ARRANGEMENT

NETWORK	TYPE	USE
1	NT $=2$	WING
2	8	WAKE
3	4	FREE SHEET
4	14	FED SHEET
5	16	FREE SHEET WAKE
6	10	FED SHEET WAKE

FIGURE 27 RECTANGULAR WING NETWORK ARRANGEMENT

NETWORK	TYPE	USE
1	NT $=2$	WING
2	6	NEAR WAKE
3	8	WAKE
4	4	FREE SHEET
5	14	FED SHEET
6	4	FREE SHEET
7	14	FED SHEET
8	16	FREE SHEET WAKE
9	10	FREE SHEET WAKE

FIGURE 28 WING WITH CROPPED TIP NETWORK ARRANGEMENT

A simple gambit which tends to alleviate the convergence problems is to modify the tip as shown in Figure 28. Instead of a tip with an edge parallel to the x-axis, the tip is modified to have a high sweep but still retain the same planform area.

5.4.6 Asymmetric or Yaw Configurations

The network arrangements for the preceding configuration all assumed a plane of symmetry and therefore zero yaw. The paneling arrangement for an asymmetric configuration or configuration at yaw demands that the entire (both sides) configuration be represented. Such an arrangement is illustrated in Figure 29, NSYMM (Card 9) must be set equal to zero. The wing may be represented by one of two networks split along the x-axis. When two networks are used for the wing, care must be taken to keep the upward sense (NxM) of the networks the same.

5.4.7 Wing Body Configuration

A network arrangement for a wing-body configuration has already been shown in Figure 11. This figure was used as an example to discuss the various network types and their uses in section 5.2.3. Table 2 summarizes the use of the various networks. One alternative possible over what is shown in Figure 11 is to combine all the source networks (1-6) into one network. Source networks are exempt from the edge matching requirements of the doublet networks.

5.5 Input Format Specifications

The input data sequence is illustrated in Figure 30 . The data sequences consists of several cards defining the flow conditions, configuration reference values, program execution mode, etc. These are followed by a series of network data blocks which define the flow model. A network data block consists of any one of several data preprocessors such as \$POINTS, \$QUADR ILATERAL, \$GOTHIC, \$TRAILING WAKE, and $\$ V O R T E X$. Two of these preprocessors can also include a call to \$CAMBERED WING for simplified input of camber surfaces.

Program size limitations have been summarized in Table 1. A summary of the various types of networks and their uses is given in Table 3.

All numerical inputs are read in 6E10.0 floating point format. Some input variables are named in traditional integer format. These designations are internal designations and the data should be input as a floating point number. All literal words are read in A4 format. Only the first four characters need be input. A description of the data input follows.

FIGURE 29 ASYMMETRIC OR YAW CONFIGURATION NETWORK ARRANGEMENT

FIGURE 30 InPuT DATA SEQUENCE

PROGRAM SIZE RESTRICTIONS TABLE 1

Restriction on total number of networks

NNETT ≤ 20

Restrictions for Quasi-Newton Scheme, ITFLOW

NF (No. of singularity strength parameters) ≤ 750
$N G(N o$. of free sheet panels) ≤ 300
$=$ No. of panel orientation angles
$N H$ (No. of fed sheet panels) ≤ 50
$=$ No. of geometry parameters
$N F+N G+N H \leq 500$

Restrictions for Least Squares Method, LSFLOW

$$
\begin{aligned}
& N F \leq 400 \\
& N G+N H \leq 80 \\
& N G+N H+N K \leq 144
\end{aligned}
$$

Where NK (=NG) is the number of twist function equations $N F+N G+N H \leq 480$

NETWORK TYPES AND THEIR USES TABLE 3

	Type
NT $=1$	Source/Analysis
NT $=2$	Doublet/Analysis
NT $=4$	Doublet/Design \#1
NT $=6$	Doublet/Design \#2
NT $=8$	Doublet/Wake \#1
NT $=10$	Doublet/Wake \#4
NT $=14$	Doublet/Wake \#2
NT $=16$	Doublet/Wake \#3

Common Use
Exterior surface of thick wings and bodies

Camber surface of wing
Free sheet
Near Wake
Simple wake or carry over lifting system
Wake behind carry over lifting system or fed sheet

Fed sheet
Wake behind free sheet

Data Card Variable (Numeric data are input in 6 E10.0 format)
Number Column Name Description/Comment

If $\$$ LEAST SQUARES ITERATION is specified then the progrm will use Least Squares method to find an iterative solution of the flow problem. A new Jacobian is computed after every 2 iterations. However, if cycle of step size reduction exceeds 3 (see Section 4.3.2), a new Jacobian will also be formed.

IF $\$$ SUBITERATION is specified then program will stop after completing subiteration phase of solution. No ITMX card is required.

IF SDATA CHECK is specified then program will set up network mesh points only. No ITMX card is required. An output file (TAPE14) wit' the network mesh points will be created for external graphics. processing. (Also see statement after card 22-END OF CASE).

17	1-10		SPRINT
18	1-10	ITPRIN	Printing output occurs at every ITPRIN iterations.
	11-20	ITVRCP	$=1$. for printout of variables, residuals and corrections resulting from full iteration
	21-30	IPLOTP	$=1$. for printer plot of cuts of vortex system
	31-40	IPTIME	$=1$. for printout of elapsed CPU time from various programs and subroutines
	41-50	IPNPIC	$=1$. for printout of near field and far field information
	51-60	IPSOLV	$=1$. for printout of out-of-core equations solver information
19	1-10	ISINGS	$=1$. for printout of resultant values of singularity strength and gradient at panel corners, centers, and edge midpoints
	11-20	IGEOMP	$=1$. for printout of geometry diagnostic data
	21-30	IS INGP	$=1$. for printout of singularity spline diagnostic data
	31-40	ICONTP	$=1$. for printout of control points diagnostic data
	41-50	IBCONP	$=1$. printout of boundary condition diagnostic data (not used)
	51-60	IEDGEP	$=1$. for printout of edge matching diagnostic data
20			SNETWORK
21	1-10	NNETT	Total number of networks; each call of \$VORTEX counts two or four networks (see \$VORTEX), NNETT < 20

**

Each network is now defined in turn by a network data block which is headed by one of the preprocessor options

Data Card Variable (Numeric data are input in $6 E 10.0$ format)
Number Column Name Description/Comment

> \$POINTS
> \$QUADR ILATERAL
> \$GOTHIC
> \$VORTEX
> \$TRAILING WAKE

The sequence in which the networks are to be input into the program is irrelevant except for the following restrictions.

1) The sequence number of the networks must be in proper sequential order.
2) A network which will be updated must be input after a network to which it is attached.
3) Moreover, the data cards (\$QUADRILATERAL, 8GOTHIC, \$POINTS) for setting up wing and/or body networks should precede those (\$VORTEX, \$TRAILING WAKE, \$POINTS) for generating free and fed sheets and the trailing wakes.

Input data for the complete case is terminated by the following card

SEND OF CASE

If $\$$ DATA CHECK is used, additional sets of data cases can be input following immediately the \$END OF CASE card.

An input format for x, y, z coordinates of all corner points of a network is provided for a general cambered wing geometry or any other network such as body, special wake, or vortex sheets.

Data Card Variable (Numeric data are input in 6E10.0 format

Number	Column	Name	Description/Comment
P2	1-10	KN	Network no.
	11-20	NT T	Type of network
	21-30	NUP	Update index
			= 0. Fixed network
			1. Trailing wake enamating from free or fed sheet 2. Fed sheet
			3. Free sheet to which no fed sheet is attached 4. Free sheet to which a fed sheet is attached
P3	1-10	NROW N	Number of rows and columns of the specified
	$11-20$	NCOL	network
P4	1-60	ZM ($1, \mathrm{I}, \mathrm{J}$)	x, y, z coordinates of corner points input by
		ZM $(2, I, J)$	column ($\mathrm{J}=1$, NCOL). Corner points are input
		ZM $3,1, J)$	sequentially (see figure above), two points per
		(I = 1, NROW)	card and continuous per point column. Start each column on a new card.
**			
Q1	1-4		\$QUADRILATERAL
			squadrilateral
			This data card calls for using Quadrilateral preprocessor to generate mesh points for a specified network no. with the given four corner points.

Data Card Variable (Numeric data are input in 6E10.0 format)

Data Card Variable (Numeric data are input in 6 E10.0 format)
Number Column

Input \$CAMBERED wing data block for simplified camber definition

Data Card Variable (Numeric data are input in 6E10.0 format)

Number Column Name \quad| Description/Comment |
| :--- |
| T1 STRAILING WAKE |

The data card calls for using Trailing Wake
preprocessor to generate mesh points for the
trailing wake network attached to wing

T2

T3

T4 $\quad 1-10 \quad$ XWAKE

Network no.
Type of network
Update index
= 0. Fixed network

1. Trailing wake emanating from free or fed sheet
2. Fed sheet
3. Free sheet to which no fed sheet is attached
4. Free sheet to which a fed sheet it attached

Sequence number of network to which side 1 of trailing network is attached

11-20 NSD Side of network to which side 1 of trailing network is attached

Data Card Variable (Numeric data are input in $6 E 10.0$ format)

XHAKE

V2	$1-10$	KN
	$11-20$	KW

V3	$1-10$	NROWF
	$11-20$	NROWV
V4	$1-10$	NAT
	$11-20$	NSD

Network no. for free sheet, the fed sheet will have network no. KN+1.
If KW = 1., then the trailing wake networks attached to free sheet and fed sheet will also be formed. Their network numbers will be KN+2 and $\mathrm{KN}+3$ respectively. If $K W=0$. then no trailing wake networks are formed

Number of rows on free sheet Number of rows on fed sheet

Sequence number or network to which side 1 of the free sheet is attached Side of network which side 1 of free sheet is attached

Data Card Variable (Numeric data are input in 6E10.0 format)

Number	Column	Name	Description/Comment
	21-30	NATF	Sequence number of another free sheet network to which side 4 of the free sheet is attached Set $N A T F=0$ if side collapses to a point
V5	1-10	APC	Perturbation parameters for size of free and fed sheets. The parameter a is reset to a + APC. If the user wants the original initial guess, APC should be set to 0 .
	11-20	JNAT	Sequence number of the vortex network to which the apex of the complete vortex system resides. JNAT will differ from KN when more than one set of networks are used to define the free and fed sheets. See figures 25 and 26 as examples.
V6	1-10	XWAKE	This card is required only if $K W=1$. X-coordinates of corner pt. at downstream of the trailng wake; should be about 50 times of the x-coordinate of the trailing edge along centerline. (also see T4)

\$CAMBERED WING

A deck must first be prepared to generate the desired networks for the flat plate representation of the configuration to be studied. The wing plan view itself will be generated either through use of the \$QUADRILATERAL preprocessor or the \$GOTHIC preprocessor.

The three-dimensional character of the wing can be defined by use of the SCAMBERED WING preprocessor. This preprocessor generates the z coordinate for the (x, y) coordinates of the flat wing representation of the desired 3-D wing through interpolation. In general, the cambered surface is defined through a set of input data specifying the wing mean lines in the chordwise direction at a limited number of spanwise stations (no more than 50). It is also possible to input a fixed mean line shape valid for all span stations scaled to the local chord. The \$CAMBERED WING preprocessor also can generate the camber surface for wings with circular arc spanwise camber. This preprocessor was originally developed in reference 6.

Thus, the current technique for generation for three-dimensional wing networks consists of two steps:
(1) Generate wing plan view, with desired paneling density using \$GOTHIC or \$QUADRILATERAL.
(2) Generate wing z coordinates using \$CAMBERED WING.

It is essential that the card set \$CAMBERED WING should follow immediately the card set \$QUADRIALATERAL or \$GOTHIC.

A description of the input card preparation, as part of the \$GOTHIC or \$QUADRILATERAL input cards is as follows (data are input in 6E10.0 format):

Number	Column	Name	Description/Comment
C1			\$CAMBERED WING
C2	1-10	CNTRL	CNTRL controls which type of wing is generated: CNTRL $=1$. is for a single mean line for all span stations, CNTRL $=2$. is for varying camber and twist with span, CNTRL $=3$. generates the Wentz (ref. 5) conical cambered delta, and CNTRL $=4$. generates the Barsby conical cambered deltas (see equation (15)).

The input cards hereafter differ and will be described for each of the 4 possible values of CNTRL.
(1) If CNTRL $=1$, a 3-D wing with a single camber shape will be generated. The necessary input cards are as follows:

C3
1-10 NPCT

C4	PCTX(I) $(I=1, N P C T)$	PCTX(I) is a table of percent local chord at which the z percent local chord is be specified on the following cards. $1.0)$		
$C 5$	$1-60$	PCTZ(I) $(I=1, N P C T)$		PCTZ(I) is a table of the z values in z / C.
:---				

This completes the necessary input for a general wing with a single mean line shape. The desired z values for the paneling generated in \$GOTHIC or \$QUADRILATERAL are then found through linear interpolation.
(2) If CNTRL $=2$., a 3-D wing with camber and twist varying with span station will be generated. (Note that for CNTRL $=1$. or 2., it is not necessary to specify NPCT $=$ NROW or NTST $=$ NCOL for the network in question.) The only restrictions are NPCT, NYST ≥ 50. The necessary input cards are:

Number	Column	Name	
C3	$1-10$	NPCT1	Number of x / c^{\prime} s at which $z / c^{\prime} s$ will be defined on card C4
$11-20$	NYST	Number of y stations at which $z / c^{\prime} s$ will be defined. The x / c array will apply at each y station	

Number	Column	Name	Description/Comment
C4	$1-60$	PCTX(I) $(I=1$, NPCT $)$	PCTX(I) is a table of percent local chord at which the z percent local chord to be specified on the following cards. $(100 \%=1.0)$
C5	$1-10$	YSTA	Y-location at which array of z/c's will be defined. Input NYST sets of C5 and C6 data cards
C6	$1-60$	PCTZ(I) (I=1,NPCT)	PCTZ(I) is a table of the z values in $/ C$.

This completes the necessary input for a general wing with varying twist and camber shape. The desired z values for the paneling generated in \$GOTHIC or \$QUADRILATERAL are then found through linear interpolation.
(3) If CNTRL $=3$. , a conically cambered delta wing will be generated where the first (0.805) b/2 is flat and at the maximum z, and the remainder of the wing semispan is a portion of a circular arc. The maximum z is 0.105 of the wing local semispan. See reference 5 for a description of these wings. When CNTRL $=3$., no further data cards are required.
(4) If CNTRL $=4 .$, a conically cambered delta wing will be generated, where the wing is a portion of a circular arc in the spanwise direction determined by the equation:

$$
\begin{equation*}
z_{\text {local }}=\frac{(b / 2) \text { local }}{2 p}\left\{\sqrt{\left(1+p^{2}\right)^{2}-\left(\frac{2 p y_{10 c a 1}}{(b / 2)_{1 o c a 1}}\right)^{2}}\right. \tag{15}
\end{equation*}
$$

where $p=0.0$ corresponds to a flat wing an $p=1.0$ corresponds to a wing which is one-half of a cone. One further card is then required to specify the value of p.

| Number | |
| :--- | :--- | :--- |
| C3 3 | $\frac{\text { Column }}{1-10} \quad \frac{\text { Name }}{\text { p1 }} \quad \frac{\text { Description/Comment }}{0.0<\mathrm{p} 1 \leq 1.0}$ |

5.6 Example Input Case

As an aid to the user in understanding the proper application of the input format specifications, two example input cases are provided. The first case consists of an aspect ratio 1.15 flat delta wing with a design wake. The network arrangement is shown in Figure 25, section 5.4.2. The inputs for this case are given in Figure 31.

The second case is a 70 panel twisted arrow wing. The network arrangement is shown in Figure 26 , section 5.4.3. The inputs for this case are given in Figure 32.

5.7. Practical Instructions

The preceding sections have given sufficient instructions to properly set up a solution, here practical hints are given to aid in their use.

1. Always submit a data check (\$DATA CHECK, Card 15) before submitting the solution to iteration. Check abutment data (described in section 6.1.3) to ensure proper network arrangement.
2. Use \$SUBITERATION (Card 15) for further checking of unusual cases. If solution does not converge in subiteration it will not converge in the full iteration process. Use of \$SUBITERATION is not necessary for typical cases.
3. Most well posed cases using conical type paneling on the lifting surface will converge using \$ITERATION (Card 15). Try 5 iterations (ITMX, Card 16) and save results on TAPE14. If case appears to be converging but residual (SSR) are greater than 10^{-3}, repeat iterations starting with saved results (set ITMX negative).
4. Cases which appear to have difficulty in converging using \$ITERATION may respond to the least squares solver, \&LEAST SQUARES. This will include most cases with streamwise lifting systems. Save data on TAPE14 in case more iterations are necessary. Remember that \$LEAST SQUARES is more expensive than \$ITERATION. Also remember the paneling limitations given in Table 1.
5. Reasonable results have been obtained using $60-70$ panels on the wing, $7-9$ rows (NROWF, Card V3) on the free sheet, and 3 rows (NROWV, Card V3) on the fed sheet. More wing panels may be necessary to obtain desired simulation of wing camber and resolutuion of the pressure distribution.

- LIET of Imput eata canos -

FIGURE 31 INPUT SPECIFICATION $-\mathrm{AR}=1.15$ DELTA WINg

A COMPUTER PROGRAM

FOR
a THREE DIMENSIONAL SOLUTION OF FLOUS OVER UINGS UITH LEADING EDGE YORTEX SEPARATION

- LIST OF INPUT DATA CARDS -

NO.	CARD IMAGES						
1	SCASE						
2	70 panel thisteo arrou hing of manroe						
3	TINOCO AND LU						
4	SANGLE OF ATtack						
5	15.?						
6	SYAW						
7	B.						
-	SSYMMETRY						
9	1.						
10	IHACH NO.						
11	0.40						
12	SRFFERENCES						
13	28.777 0. 0.						
14			$489.713 \quad 1 . \quad 29.652 \quad 1.0$				
15	IDATA CHECK						
16	SPRINT						
17	1.1		1.				
1 A	SNETUORK 0. 0. 0						
19							
2:	1 C .						
21	SPOINTS						
22	1.		0 -				
23	8.						
$\bigcirc 4$	3.51020	0.00000		0.00000	3.51020	0.00000	0.00000
25	3.51020	$0.00 c c o$		0.00000	3.51020	0.00000	0.00000
2ϵ	3.51520	$0.060 c o$		0.0000	3.51 .20	c. OEUSO	0.0.000
27	3.51020	0.00000		0.00000	3.51020	0.00000	0.00000
28	9.76610	0.00000		0.00000	9.76610	. 29813	-. 00992
29	9.76610	. 7666, 2		-.02E18	9.76610	1.21382	-. 04248
30	9.76610	1.51195		-. 05377	9.76610	1.72490	-. 06204
31	9.76610	1.95914		-.07133	9.76610	2.12950	-. 09286
32	18.00000	0.00000		0.00000	18.00000	. 69054	-. 01505
33	18.00000	1.77566		-.04493	18.00000	2.81147	-. 14472
34	18.00000	3.50200		-. 23210	18.00000	3.99524	-. 29902
35	18.00000	4.53781		-.3E985	18.00000	4.93240	-. 45796
36	26.EOOCO	0.0000 C		0.00060	26.60500	1.10039	-. 01407
37	26.60000	2.82956		-. 08644	26.60000	4.48014	-. 23916
38	26.60000	5.58053		-. 37778	26.60000	6.36652	-. 49201
39	26.60000	7.23111		-.63322	26.60000	7.85990	-. 74483
40	35.00000	0.00000		0.00000	35.00000	1.50070	-. 00385
41	35.00000	3.85895		-.06739	35.00000	6.11000	-. 22973
42	35.00000	7.61010		-.39398	35.00000	8.68263	-. 53159

FIGURE 32 InPuT SPECIFICATION - ARROW WING

43	35.00000	$9 \cdot 8 \in 176$	－． 70224	35.00000	10.71930	－．82589
44	40.00000	0.00000	0.00000	40.00000	1． 73898	． 00608
45	40.00000	4.47167	－． 02067	10．00000	7－08014	－． 16643
46	40.00000	8.81912	－． 33143	40.00000	10.06125	－． 47759
47	40.00000	11.42760	－． 64781	40.00000	12.42130	－． 77641
48	45.21610	0.00000	0.00000	45.21610	1．98757	． 01949
49	45.21610	5.11088	． 06109	45.21010	8．09223	－．05161
50	45.21610	10.07980	－． 21367	45.21610	11．49949	－． 35829
51	45.21610	13.06115	－． 53012	45.21610	14．19690	－． 65902
52	\＄POINTS					
53	2.	2.	0.			
54	B．	5.				
55	45.21610	0.00600	0.00000	45.21610	1.98757	． 01949
E6	45.2161 u	5.11088	－J 109	45－21610	8．c5223	－． 05161
57	45.21610	10.07980	－． 21367	45.21610	11.45949	－．35829
r． 8	45.21610	13．06115	－ 53612	45．21610	14．19690	－． 65902
\％	50.00000	5.01431	－1EE01	50.00000	6．52785	－14．834
60	$50 . ? 000$	8.90626	.10163	$55^{5} .0 G 000$	11.17657	－－05564
61	50.50	12．E9611	－ 14566	50.00	13.77121	－． 30487
$6:$	50.00000	14.96042	－．42570	50.00000	15.82530	－． 51511
43	55.00000	10.25512	－27457	55.00000	11.27323	－ 21775
E4	55.00000	12．t7311	－ 04550	55.00000	14.40026	－． 04357
65	55．ご心J0	15.41837	－． 14196	55.00300	16.14559	－． 21413
（6）	55.10000	16．9455	－．25509	55.00 こ00	17.52730	－． 35508
r． 7	60.00000	$15.4955+$	－ 18161	60.00000	16．01862	－13249
48	68.00000	16.83999	－05＊59	60.00000	17.62401	－． 02349
69	GU．＇COSO	18.14670	－．07615	60.00000	18．52004	－． 11541
$7{ }_{1}$	$6^{-} .00000$	12．93072	－． 15998	60.00000	29.22940	－． 19332
71	65.27500	21.02500	$=.00004$	65.27500	21．02540	－． 09304
72	65.27500	21.02500	－． 00004	65.27500	21.02500	－ 000004
73	65.275%	21.02500	－． 00004	65.27500	21.02500	$=.00004$
74	65．275u0	21.02500	$=.00004$	65.27500	21.02500	$=.00004$
75	SVORTEX					
76	3.	0.				
77	8.	3.				
78	1.	3.	0.			
79	0.	3.				
90	SVORTEX					
81	5.	1.				
87	8.	3.				
83	2.	3.	3.			
R 4	0.	3.				
85	2500.					
86	SPOINTS					
87	9.	6	D．			
88	4.	5.				
89	45．216．1	0.	0.	52.5	O．	0.
00	60.	0.	0.	65.275	0.	0.
91	50.	5.01431	.15691	55.	5.1014	－ 156
92	60.	5．014	． 156	65．275	5．014	－ 156
93	55.	10.25512	－ 27657	57.5	10．26	－ 277
94	62．5	10.26	－ 277	65．275	10.26	－277
95	60.	15．49554	． 18161	62.	15.50	． 182
96	64.	15.50	－182	65.275	15．50	－ 182
97	65.275	21.025	－．00004	65.275	21．025	－．00004
98	65.275	21.025	－． 00004	65.275	$21 \cdot 025$	－． 00304
99	STRAILING	WAKE				
100	10.	8.	0.			
101	9.	3.				
162	2500.					
103	SEND OF CA	SE				

6.0 OUTPUT GUIDE

In this section the organization of the computer output is described. The nomenclature employed in the output is summarized in Table 4. A typical output (with the appropriate print options) will consist of a copy of the program inputs, printer plots of the initial free/fed sheet, network coordinates, and network abutment data. If the \$DATA CHECK option had been used the program would terminate at this point. If the \$SUBITERATION option is used then printout will also include results from the initial solution. If a complete solution is sought the singularity parameters, corrections, and residuals, and updated geometry can be printed every iteration. Printout of the solution results (pressure coefficients, velocities, etc) can be deferred until the final iteration, printed every so many iterations, or every iteration.

Additional print options provide for the printing of detailed diagnostics which can be of use to a user intimately familiar with the workings of the code. Although of not much use to the typical user a brief description will be given of these options.

The program also creates a file (TAPE14) which can be saved and used to restart the iterations if convergence is not achieved in the first solution attempt. A description will be given of TAPE14 in section 6.4.

Examples of the output will be presented to aid in its description. The examples used are from the aspect ratio 1.15 flat delta wing case used to illustrate the inputs in section 5.6. Since the program always prints out the inputs, the first part of the output will appear as shown in Figure 31. The input formats are described in section 5.5.

6.1 Data Check Output

In this section the print out typically associated with a data check will be described. This print out is included in every solution.
6.1.1 Free and Fed Sheet Printer Plots (OPTIONAL, IPLOTP=1)

Printer plots of the free and fed sheets geometry are shown in Figure 33. These plots are created when IPLOTP $=1$ (Card 18). The network arrangement, Figure 25, contained two sets of free and fed sheet networks which results in the two plots. A different symbol is used for each transverse cut. The poor resolution of the printer plots results in a somewhat ragged look of the cuts but will at least give the user an idea of the initial geometry. Note the change in the horizontal scale for the plots of networks 6 and 7.

6.1.2 Mesh Point Data

The program always prints the mesh point data. An example of the mesh point data printout is shown in Figure 34. Only a partial list is shown for the sake of brevity. The mesh point data is organized by network.

FIGURE 33 PRINTER PLOT OF VORTEX SHEET

FIGURE 33 CONCLUDED

IMPUT METHORK MESH POIHTS DATA

METVORK MO． 0.08080	$0 \cdot \mathrm{cosec}$	（NUMBER ROWS 0.00001	$\begin{aligned} & =7 \\ & 0.00000 \end{aligned}$	WUMEER COLUM	$\begin{gathered} 18 \\ 0.008 \end{gathered}$
1.00800	c．sceco	$0.5 C 00$	1．0coen	0.00000	0.00000
1．00800	0.80008	0.00060	$0.0000{ }^{0}$	0.00080	0.00000
B．00000	－． 80808	0.00808	－20808	0.00080	d．ticte
－20800	． 81725	0.10008	． 20008	． 82875	0.00000
． 20008	－ 03594	8.80000	． 20008	． 84313	－ 0.00008
－20000	－ 95032	0.00000	.20408	． 05750	F．0ceot
． 40000	0．OCOOC	0.0003 t	－9C00\％	.13450	0.0060
－40088	.05750	0.080 OO	． 40080	． 07188	0.00000
． 40090	－ 0 月62 5	9．00090	－4000\％	． 16063	0.80000
.40008	． 11500	0.0 .000	.60000	0.00000	0.00000
－60000	． 05175	0.00000	． 60000	－ 18825	0.00000
． 60000	．12781	\％．00000	.60000	． 12936	H．00000
.60008	． 15094	0.00 cos	－ 60000	． 17250	0.08000
． 80000	0.00008	0.00000	． 10000	． 06980	0．00308
.80000	.11500	0.02000	.80000	.14375	－0．0000
． 80000	－17250	0.09000	． 80090	－20125	0.00000
－ 80400	－ 23080	0.00000	1.00000	1．00000	0.00000.
1.00000	－ 01625	0.00000	1.00000	．14375	0.00008
1.00000	． 17969	0.00000	1.00000	． 21563	－0．0fied
1.00000	.25156	0.00000	2.00000	.23150	0.00008
METHORK NO	2	（NUMBE夏 ROUS	$=3$	HHMAES COLU	\％ 71
2.05006	－．00000	$0.00 n 00$	1.05000	0.00065	0．0000t
1.10000	0.00000	0.00000	1.00000	．08625	0.00008
1.05000	－05056	0.60000	2.10000	．094月4	0.00030
1．00000	－14375	0.00005	1.05090	． 15.094	0.0000
1.10000	． 15813	0.00000	1.00000	.11969	O．tolot
1．0500\％	－ 188 ct	0.00090	1.10000	． 19766	0．00089
1.00800	． 21563	0.00000	1.05000	． 22641	0.00008
1.10000	－23719	0.00000	1.00008	－25156	0.00006
1.05000	－26414	0.03090	1.10000	.27672	0.00006
1.02000	－ 28750	$0 \cdot C D C D O$	2.05000	． 30188	0.00000
1.10080	． 31825	0.00000			
WETVORK HO．	3	SNUMBEA OWS	$=$ ？	NUMBER COLUF	$=71$
1.10000	0.00000	0.00000	50.00000	0.00000	0.0808
1.10000	． 09488	0.09000	50.00000	－09488	0.00000
1.10000	． 15813	0.09000	50．09000	.15813	0.50000
1.10000	.19766	0.00000	50.00000	.19766	0.00000
1.10400	－ 23719	0.00000	50.00000	－23719	－6．0004
1.10900	－ 21672	0.00000	50.00080	． 27672	0.00000
1.10000	－31625	0.00000	50.00000	.31625	0.00000
METYORK NO．		CNUMEEM FOHS	± 9	NUPEER COLUF	$5=61$
－00000	0.01000	0.60000	0.00000	0.00000	0.00000
－ n coco	$0 \cdot 7 \mathrm{cose}$	0.08000	0.00000	0.00000	0.00000
－． 00000	0.00000	C．00000	0.00000	0.00000	0.00000
0.00008	0.00000	0.00000	0.00000	0.00900	\％．0000
0.00000	－．9ccoo	0.00000	－20000	－「5750	－．000C0
． 20000	．06211	$-C 0563$	－20000	－06398	.01277
.20000	． 06392	－C2：15	.20000	． 06241	．02731
.20000	． 05969	．03416	.20090	.05545	．04015
.20600	．04543	－64439	.20000	－04233	.04617
－ $4 C C O$	－11500	－00cte	－49000	－12472	.01126
． 40000	－12796	． 02554	－4c000	－12783	－64030
.40000	.12483	． 05461	.40000	.11938	．06820
.40008	． 11094	． 08029	.40000	．09885	．08677
.40000	． 08457	． 09233	.60000	.17250	0.00400
． 60000	－18632	．01489	． $6 C C 00$.10195	． 03531
.60000	． 19175	.06745	.60000	－14724	－t8192
－ECOCE	－17906	． 10230	． 60000	． 1 ＋635	． 12044
.60008	－14828	.13316	． 60000	．12713	． 1385
.80000	． 23000	0.00000	． 80000	－24843	－ 2231
－ 80080	－25593	． 05108	－ HCOGO	－25567	． 08.61
.80080	． 24965	．10923	－ 8 coes	.23075	.13640

FIGURE 34 MESH POINT DATA

Each network is identified followed by the number of rows and columns (M and N). Paired mesh points coordinates are presented by row in 6F10.5 format in X Y Z order.

6.1.3 Abutment Data

The program always prints the abutment list, abutment intersection list and the update index arrays. These data are vital to determining whether the networks have been properly defined to ensure the appropriate matching along their edges. Unless proper matching occurs along all network edges the flow model and the resulting solution will be in error. Every network arrangement should be run through data check and have its abutment list thoroughly checked before being committed to solution.

The abutment list is shown in its entirety in Figure 35. The corresponding network arrangement is illustrated in Figure 36. A similar sketch should always be prepared to aid the user in the abutment checks. The abutment list consists of the abutment number, side and network involved, and a characterization of the control points. The user should refer to section 5.2.4 for the control point placement for the various types of networks. To facilitate understanding of the abutment list a walk through of the list follows.

Abutment 1 concerns side 1 of network 1 which is on the plane of symmetry. These control points satisfy their appropriate boundary conditions. Side 4 of network 1 collapses to a point and has no abutment. Abutments 2 and 3 concern the remaining two sides of network 1. These sides both abut to other networks, side 2 to the near wake network 2 and side 3 to the free sheet network 4. Proper matching is indicated by the characterization "control points peform doublet matching." In both cases the control points on network 1 satisy the boundary conditions while the control points on networks 2 and 4 do the matching. Abutment 4 between networks 2 and 6 is similar.

Abutments 5, 10, 11, 14, and 15 are between networks in which one edge has no control points. In each case the proper abutment is indicated by the edge with the control points performing doublet matching. Abutments 7 , 12, 16 and 18 have no control points on their coincident edges. Here proper abutments are indicated by the network pairing. Abutments 8, 13, 17, 19, 20 and 21 are not actually abutments but free edges. If an error is made in the network definition such that the proper abutment is not made between two adjacent networks, the program will not pair the networks and regard them as free edges.

The Abutment Intersection List is shown in Figure 37. This list is similar to the abutment list except that it characterizes the control point behavior at network corners. If the abutment list checks out for the configuration the user need not concern himself with the intersection list.

The Update Index Arrays are shown in Figure 38. These arrays list the various control parameters which regulate the geometry update during

FIGURE 35 ABUTMENT LIST PRINTOUT

FIGURE 36 ABUTMENT CHECK

AEUTHEWT IMTERECTIOM LIBT

UPDATE INDEX ARRAYS

FIGURE 38 UPDATE INDEX ARRAYS PRINTOUT
iteration. These data define how the various networks are connected together. Table 4 lists the definitions of the various headings. The general user need not be concerned with this print out.

6.2 Solution Output

In this section the printout typically associated with an iteration solution will be described. For every main iteration the following is printed.

Iteration Summary
Iteration No.
Sum of Squares of Residuals (SSR) =
No. of Function called =
Fraction of Newton Step taken $=$
Step Size (Length of Correction Vector) =
Force and Moment Data for NT $=1$ or NT $=2$ Networks
Network Mesh Point Data
For every ITPRINT (Card 18) iterations the detailed physical quantities are printed.

When IPLOTP = 1 (Card 18)
Printer Plot of Vortex Sheet
When ITVRCP $=1$ (Card 18)
Values of Variables
Residuals
Corrections

6.2.1 Iterative Results Summary

These data are printed every main iteration and serve to summarize the progress of the solution during the iteration process.

Iteration No. - Counter on the number of iterations taken. Starts with "0" for the initial guess solution.

Sum of Squares of Residuals (SSR) - This is the sum of the squares of the residuals. When using ITFLOW, SSR $=F^{2}+G^{2}$ (refer to equation 9, section 4.3.1). In using the Quasi-Newton, ITFLOW, SSR is a reliable indicator of the goodness of the solution. A solution may be considered acceptable when $S S R<10^{-3}$.

When using the least squares solution procedure LSFLOW, $S S R=G^{2}+k^{2}$ (subiteration drives F to zero, also, refer to equation 12 , section 4.3.2). A solution is acceptable when $\operatorname{SSR}<10^{-3}$. For higher values of SSR the residual is not a reliable indicator. Many converged solutions will have residuals larger than 10^{-3}. This may result because the panel twist residual K is included in the sum. A more reliable indicator in this case may be the residuals of G.

No. of Function called - Cumulative number of function residual calculations for the iterations performed.

Fraction of Newton Step Taken - Refer to Appendix G, Volume I - Theory Document.

$$
x^{(i+1)}=x^{(i)}+\delta \Delta x^{(i)}, \quad 0<\delta \leq 1
$$

where δ is the fraction of Newton step taken and ΔX^{i} is the correction vector.

Step Size (Length of Correction Vector) - Refer to Appendix G, Volume I Theory Document

$$
\left\|\delta \Delta x^{(i)}\right\|=\delta\left\|\Delta x^{(i)}\right\|
$$

where \| \| is the euclidean length.
Force and Moment Data for NT $=1$ or NT $=2$ Networks - This is a force and moment summary on all source/analysis (NT = 1) and doublet/analysis (NT = 2) type networks. These type networks are used to define configuration surfaces and this summary will give the total forces acting on the configuration. An example of this printout is shown in Figure 39. The force and moments are with respect to the configuration axis system. Also printed is the network surface area. Three sets of data are printed for each quantity. The top values represent forces and moments calculated integrating pressures (based on the isentropic formula, section 6.2.2, equation 19) on the upper side of the network, middle values represent the lower surface totals, and the bottom values represent the sum of upper and lower. The upper and lower sense is determined by the NxM vector (points out from the upper surface).

Network Mesh Point Data - Updated mesh point geometry. See 6.1.2 for details.

6.2.2 Detailed Physical Quantities

For every ITPRINT (Card 18) iterations, the detailed physical quantities are printed. These are also printed for the initial solution and the final iteration. An example of these results are shown in Figure 40. The quantity headings are defined in Table 4. The printout is organized by network. For every panel center-control point the following quantities are listed:

Source strength
Doublet strength
Doublet strength gradient
Perturbation velocity potential*
Total velocity potential*
Perturbation mass flux vector*
Total mass flux vector*

FIGURE 39 FORCE AND MOMENT SUMMARY
$\stackrel{\infty}{\sim}$

	ETHORK	NUMPER $=$	1	NETHORK TYPE	$=2$	number	ROWS =	6	NUMBER COL	COLUMNS =	E	
	$1 P$	x	γ	2	D 9	cx	DY	D2	So	Fsux	Fsvy	Fsvz
	PhiU	WXU	wive	W20	PHEU	PWXU	PWYU	PHZU	CPLINU	CPSLNU	CF 2NDU	CPISA.U
	PHIL	WXL	SVL	H2L	PHEL	PYXL	PUYL	FWZL	CPLINL	CPSLNL	CP2NCL	CFISAL
	UNU	WNL	WTU	WTL	PhiUl	FHILI	PUNU	PIVNL	CPLIND	CPSLND	CP2NDE	CPISRI
3	1	-1nor	. 0043	0.0000	. 0299	. 0736	. 2974	0.0000	0.0000	.9397	0.0700	. 34.0
	. 1120	1.1970	-.0131	. 0000	.0181	. 1573	-.0131	-. 3420	-. 0963	-.2373	-. 2388	-. 2345
	. ORT2	- H 9 HJ	. 0605	.0000	-. 0118	-.0414	. 0605	-. 3420	. 4872	. 3892	-551?	-335.7
	.0000	- 0000	1.0971	- 9203	- 16.18	.1319	-. 3420	-. 3420	-. 583 Sh	--6265	-. 5900	-. 5742
4	2	. 140.0	.0115	0.0000	. 0290	.1700	- $30: 7$	0.0000	0.0000	. 9397	0.0000	-34:0
	.1119	1.0973	-.0158	. 1000	. 019	. 1576	-. 0138	-. 3420	-.0973	-.2384	-. 239 j	-. 2356
	.0829	. 1930	. 1542	- Deno	-.0111	-. 0466	. 1542	-. 3420	. 5025	. 3855	-3454	. 3318
	. 0000	-1000	1.0974	. 9663	.1613	. 1323	-. 3420	-. 3420	-. 5998	-.6238	-.5849	-.EET3
5	3	. 1000	. 0162	0.0000	. 0280	. 2731	- 3205	0.0000	0.0000	. 9397	O.ccou	. 3470
	. 1118	1. 1954	-.c368	.0000	. 0179	. 1597	-. 0368	-. 3420	-. 1035	-. 2463	-. 2480	-. 2434
	-0838	- Re53	. 2363	.0000	-. 0102	-. 0544	. 2363	-. 3420	. 5254	. 3779	. 3337	. 3175
	- OCCO	- 600	1.1040	. 9163	. 1608	. 1328	-. 3420	-. 3420	-. 62889	-. 6241	-. 5817	-. 56 ¢9
6	4	.3000	. 0198	0.0000	. 0268	. 4091	. 3456	0.0000	0.0000	.9397	0.0000	. 3420
	. 1116	1.1055	-. 0852	. 0000	. 0177	. 1658	-. 0852	-. 3420	-. 1212	-. 2714	-. 2788	-. 2689
	. 0848	. 4745	.3239	. 0000	-. 0092	-. 0652	. 3239	-. 3420	.5570	. 3626	. 3129	. 2924
	. 0000	. 0000	1.1087	.9326	.1602	. 1334	-. 342 J	-. 3420	-.6782	-.6343	-. 5867	-.5618
7	75	.1000	. 0234	0.0000	. 0250	. 6313	. 3947	0.0000	0.0000	.9397	D.tict	-3420
	. 1112	1-1142	-. 1714	.0000	. 0172	. 1785	-. 1714	-. 3420	-. 1586	-.3342	-.3383	-.3352
	- ore?	. 8545	$.4600$. 1000	-. 0078	-.0852	. 4600	-. 3420	. 6158	- .3188	. 2581	.22\%6
	.0000	. 0000	1.1312	. 9704	. 1594	.1343	-. 3420	-. 3420	-.7744	- -6530	-. 5964	-5568
t.	: 6	-1cor	.0270	0.0000	. 0222	1.1258	. 5225	0.0000	0.0500	. 0397	0.0900	. 34 : 0
	. 1104	1.1444	-. 3226	. 0000	. 0165	. 2047	-. 3226	-. 3420	-. 2355	-.4928	-. 50.016	-. 4840
	-cers	. 7953	. 8032	. 0000	-. 0058	-. 1444	. 8032	-. 3420	. 7896	. 0705	-.029?	-.0847
	. 0000	. 0000	1.1890	1.1303	.1579	. 1357	-. 3420	-. 3420	-1.0252	- -.58 .33	-. 4724	-. 3953
11	17	-3000	. 0129	0.0000	. 0869	. 0626	. 2786	0.0000	0.0000	.9397	0.1000	-3420
	- 3334	1.6892	-. 0079	- 0000	. 0515	. 1495	-. 0079	-. 3420	-. 0734	- $\quad .2122$	-. 2130	-. 2095
	- 2465	- 5035	.4547	.0000	-. 0354	-. 0367	. 0547	-. 3420	. 4733	- 3749	. 3391	- 3282
	-0cod	. 0000	1.0892	. 9047	. 4839	. 3970	-. 3420	-. 3420	-. 5456	-.5871	-.5521	-. 5376
12	2 8	-3n00	- 0345	0.0000	. OB46	. 1605	. 2875	0.0000	0.0000	-9357	0.0000	-34:0
	. 3332	1.0897	-. 0120	. 0000	. 0513	. 1500	-. 0120	-. 3420	-. 0749	- $\quad .2139$	-.2148	-.2112
	.2486	-8576	.1485	. 080	-. 0333	-. 0421	. 1485	-. 3420	. 4892	. 3729	. 3346	. 3220
	. 0000	. 0000	1.0898	- 9C9\%	. 4828	. 3982	-. 3420	-. 3420	-. 5641	-.5868	-. 5494	-. 533%
13	39	.3000	. 0485	0.0000	. 0817	- 2569	. 3019	0.0000	0.0000	.9397	0.0000	. 340
	- 3329	1.6917	-. 0303	- ceot	.0510	. 1520	-. 0303	-. 3420	-. 0808	$8 \quad-.2212$	-. 2222	-. 2184
	. 2512	- P9C0	-2265	. 0000	-. 0307	-. 0497	. 2265	-. 3420	. 5116	- $\quad \pm 67 \epsilon$. 3257	. 3115
	. 0003	.0000	1.0521	. 9184	.4813	.3996	-. 3420	-. 3420	-. 5924	-.5888	-.E479	-.52E
14	110	-30co	. 0593	0.0000	.0783	. 3853	.3263	0.0000	0.0000	-9397	0.0000	-34 0
	. 3324	1.0975	-. 0757	.0000	. 0505	. 1578	-. 0757	-. 3420	-. 0979	-. 2445	-. 2461	-.2415
	. 2541	. 8795	. 3097	.0000	-. 0278	-. 0602	. 3097	-. 3420	.5422	- 3559	.3688	. 2896
	. 0000	. 0000	1.1001	. 9324	. 4796	. 4013	-. 3420	-. 3420	-. 6401	- -.6009	-. 5549	-.5311

40 PHYSICAL QUANTITIES PRINTOUT

Normal and tangential components of total
Mass flux vector*
Normal component of perturbation mass flux vector* Pressure coefficient*

Quantities starred are listed for both the upper and lower surfaces of the network. Four different pressure formulas are used for the pressure coefficient:
$C_{p}=-2 u$ (Linearized)
$C_{p}=-2 u-v^{2}-w^{2}$ (Slender Body)
$C_{p}=-2 u-\left(1-M_{\infty}^{2}\right) u^{2}-v^{2}-w^{2}($ Second Order)
$C_{p}=\frac{2}{\gamma M_{\infty}^{2}}\left\{\left[1-\frac{\gamma-1}{2} M_{\infty}^{2}\left(2 u+u^{2}+v^{2}+w^{2}\right)\right]^{\frac{\gamma}{\gamma-1}}-1\right\}$ (Isentropic)
Here (u, v, w) is the perturbation velocity vector, referred to the compressibility axis which is aligned with the freestream vector. Also listed are the differences in the four pressure coefficients across the network (upper surface value minus lower), the control point label, the panel label, the control point coordinates, and the components of the freestream velocity. The results for each network are followed by summaries of the forces and moments similar to those shown in Figure 39 and described in the previous section. In addition to the total forces for the network, forces and moments are also given for each column of the network.
6.2.3 Free and Fed Sheet Printer Plots (OPTIONAL, IPLOTP= 1)

When IPLOTP=1 (Card 18) printer plots of the updated free and fed sheet are produced. These plots have been illustrated in Figure 33 and are discussed in section 6.1.1.
6.2.4 Variables, Residuals, and Corrections (OPTIONAL, ITVRCP=1)

When ITVRCP $=1$ (Card 18) values of the program variables, the residuals at each control point, and corrections for the iteration are listed. These data are organized by type and by network. Figure 41 illustrates a partial printout of these quantities. The singularity strengths, the corrections to these strengths, and the associated residuals are ordered by control point order. See section 5.2.4 on network types and uses for proper ordering. The orientation angles, corrections and associated residuals are ordered one per panel and are given in degrees. Geometry parameters lamda and nu, corrections, and residuals are ordered by free/fed sheet column. Note that the residuals are identified as to type and that the sum of the squares of the residuals is given for each network.

SIMEULARITY STRE胃ETM

fyalues of vartabless

SINGULEAITY STRENGTH

FIGURE 41 CONCLUDED

6.3 Diagnostic Printouts

In this section the various optional diagnostic printouts will be briefly described. These printouts were used in the early program development and are as such not much use to the typical user.

6.3.1 Geometry Data (OPTIONAL, IGEOMP=1)

An alternate form of the geometry data is printed when IGEOMP =1, (Card 19). An example of this printout is shown in Figure 42. The program lists the coordinates of all grid points along with its number, row number, column number, and network number. Panel data is also included listing panel number.

6.3.2 Singularity Distribution Definitions (OPTIONAL, ISINGP=1)

Panel distribution quantities shown in Figure 43 are printed when ISINGP=1 (Card 19). This printout lists the singularity parameter numbers and coefficients for the nine canonical points on each panel. Refer to Appendix B, Volume I - Theory Document, for further discussion of these parameters.
6.3.3 Control Point Data (OPTIONAL, ICONTP=1)

Control point data, shown in Figure 44, are printed when ICONTP $=1$ (Card 19). These data list the control point index, network number of control point, panel number of control point, side number of edge control point, control point index along an edge, edge control point characterization, global coordinates of control point, and upper surface normal at control point.

6.3.4 Edge Control Point Data (OPTIONAL, IEDGEP=1)

Edge control point data, shown in Figure 45, are printed when IEDGEP=1 (Card 19). These data list the edge control point index, panel number of control point, influencing panel number, side of influencing panel, and global coordinates of control point.

6.3.5 Singularity Grid Data (OPTIONAL, ISINGS=1)

Singularity grid data, shown in Figure 46, is printed when ISINGS=1 (Card 19). The program prints out the source strength, the doublet strength, and the components of the surface vorticity vector along the row and column directions and in direction normal thereto as well as along the global coordinate axis. This is done for the nine canonical points: the four corners, the mid points of each side, and the panel center. These data are useful in checking the continuity of the doublet strength from one network to another. Data are organized by network.

6.3.6 Elapsed CPU Time (OPTIONAL, IPTIME=1)

When IPTIME=1 (Card 18), the program prints the elapsed CPU time from various programs and subroutines.

gedmetry data

MESH POINT DATA

Numeer	ROW	COLUMN	NET. NO.	x	Y	2
1	1	1	1	0.0000000000	0.0000000000	0.0000000000
2	2	1	1	0.0000000000	0.0100000000	0.6000000000
3	3	1	1	0.0000000000	0.0000000000	0.1000000000
4	4	1	1	0.0000000000	0.0uragjooto	0.000000000
5	5	1	1	0.3000000000	0.0500000000	0.0000000000
6	6	1	J	0.0000000000	0.0000000000	0.0000006000
7	7	1	1		0.0000000000	0.0000000000
8	1	2	1	.200000000	0.0000000000	0.0000000000
9	2	2	1	. 2003008000	-0172500060	0.000000000
10	3	2	1	. 200000000	.0287500000	0.0000000050
11	4	2	1	. 2000000000	.0359375000	0.0000000000
12	5	2	1	.2000800000	.0431251000	0.0000000000
13	6	2	1	.200000000	. 0503125000	0.000000000
14	7	2	1	-2coocaccoo	.057500000	0.000000000
15	1	3	1	. 4000000000	0.0400000000	0.000000000
16	2	3	1	.400000000	.0345650000	0.000000000

FIGURE 42 MESH POINT DATA

PANEL DISTRIBUTION QUANTITIES
as - COEFFICIENTS FOR THE 9 CANONICAL PANEL LOCATIONS

15	A1	A 2	A3	14	A5	A6	A7	AB	A9
1	. $10000 \mathrm{E}+01$	-. 410965000	--5066Tr-01	.10000E+01	0.	-.85571E-01	-.2913BE-16	. $100000+01$	0.
2	0.	-45205E+00	-.54846.E-02	0.	.10000E+01	. $4972 \mathrm{AE-C2}$	-.269096.02	0.	0.
3	0 .	0 。	. $146 \mathrm{ERE}+00$	0 -	0.	$.53159 E+00$	- $40235 \mathrm{E}+00$	0.	. 10000 E + 01
4	0.	0.	-34PERE 0 O	0.	0.	-. $11156 \mathrm{E}^{\circ}-02$. $60335 \mathrm{E}+00$	0.	0.
5	0.	0.	-. 60603E-92	0.	0.	0.	-.30063E-02	0.	0.
10	0.	. 698 d35400	-.4B822E-01	0.	0.	-27273E-01	-. $12806 \mathrm{E}-01$	0.	0.
11	c.	0.	-34604E+00	0.	0.	-596675+00	-12171E-c1	0.	0.
12	0.	0.	.43275E+00	B.	0.	.19097E-01	-13435E-C1	0.	0.
13	0.	0.	-.54543E-01	0.	0.	0.	-.12799E-01	0.	0.
18	0.	-. $10959 \mathrm{C}+00$	0.	0.	0.	-. 10017E-01	0.	0.	0.
19	0.	0.	-.51613E-.1	0.	0.	-. $76063 \mathrm{E}-01$	0.	0.	c.
20	0.	0.	-.51613E-01	0.	0 .	-.68302E-02	0.	0.	0.

PANEL NO. $=2$ NETVORK NO $=1$ DISTRIBUTION ORDER $=2$ NUMEER OF SINGULARITY PARAMETERS = 14

15	11	12	A3	14	45	A6	A 7	$A 8$	19
1	. $10000 \mathrm{E}+01$	-.54065c-01	-, 50065E-01	. $10000 \mathrm{E}+01$	-.29136E-16	-.85425E-01	-.30840E-14	. 10000501	0.
2	0.	-.54246C-02	0.	0.	-.2t909E-02	0.	0.	0.	0.
3	0.	-146GPE+60	-. 263 E2E-02	6.	. $40235 \mathrm{E}+00$	-.49277E-03	-.19255E-02	0.	r.
4	0.	- 3 S 6 GGAE+00	. $132545+00$	0.	$.60335 \mathrm{E}+00$. 53091 t + 00	-38899E+00	0.	. $10000 \mathrm{E}+01$
5	0.	-. 6RFGSE-02	. $354895+00$	0.	-.30063E-02	.47507E-02	-613615+00	0.	c.
6	0.	0.	-.918695-03	0.	0.	0.	-.671002-03	0.	0.
10	0.	-.48822[-01	0.	0.	-.12806E-01	0.	0.	0.	0.
11	0.	- $34904 \mathrm{E}+00$	-.23726EF01	0.	.12171E-01	.1989RE-01	-.4497ut-c2	0.	c.
12	0.	.43275c +00	. $354325+00$	0.	-13435E-01	- 5963 EE+00	.70071E-02	0.	1.
13	0.	-. 54543E-01	. $35530 \mathrm{~F}+00$	0.	-.12799E-01	-2604CE-01	-32207E-02	0.	0.
14	0.	0.	- A268EE-02	0.	0.	0.	-.57308E-02	0.	0.
19	0.	-.51613E-01	0.	0.	0 -	-.71435E-02	0.	0.	0.
20	0.	-. 51613E-01	-.51613E-01	0.	0.	-. $75934 \mathrm{E}-01$	0.	0.	0.
21	0.	0.	-.51613E-01	0.	0.	-.98883E-02	0.	0.	0.

FIGURE 43 SINGULARITY DISTRIBUTION DEFINITION DATA

CONTROL POINT LOCATIONS ANO YORMALS

```
    JCN - CONTROL FOINT INDEX IINCLUDING THOSE USED FOR FORCE CALCULATION
    KC - NETWORK NO. OF CONTROL POINT
    ISC - FIOE NO OF [DCE CONTADL MOIN
    ISC = EIOENO. OF LDGE CONTROL FOIN
    IZC - CONTRCL FOINT INOFX ALONG AN EDGE
    ICH - EDGE CONTROL FOINT CHARACTERIZATION
        =0 REAL
        & DOUblet value matching
        =2 DOUBLET NORMAL DERIVATIVE MATCHING
        =3 OOUBLET TANGENTIAL DERIVATIVE MATCHING
    x,y,z - GLOBAL COORDINATES OF CONTROL POINT
HX,NY,AZ - UPPER SURFACE NORMAL AT CONTROL POINT (IN GLOBAL COORDINATES)
```

JCN	KC	IFC	ISC	120	ICH	x	Y	2	HX	NY	N2
1	1	6	3	7	1	-. 000000	O.cccoco	0.0000co	0.000000	0.000000	1.000000
2	1	1	1	2	2	-10COSO	0.000400	0.000000	0.000000	0.000000	1.000000
3	1	1	0	0	0	.100000	-004313	0.000000	0.000000	0.100000	1.000000
4	1	2	0	0	0	.100000	. 011500	0.00000	0.000000	0.000000	1.000000
5	1	3	0	0	0	. 100000	. 016172	0.000000	0.000000	$0.0000<0$	1. 000000
6	1	4	0	0	0	.100000	. 019766	0.000000	0.305000	0.000000	1.100000
1	1	5	0	0	0	. 100000	. 023355	0.000000	0.000000	0.000000	1.000000
B	1	6	0	0	0	.100000	. 026953	0.000000	0.000000	0.000000	1.000000
9	1	6	3	6	2	-100000	. 028750	0.000600	0.000000	0.000000	1.cccooo
10	1	7	1	3	2	. 30000	0.0cncio	0.000000	0.000100	0.000060	1.000000
11	1	7	0	0	0	. 3 cccoo	.012538	$0.90 c<00$	0.000000	0.300000	1.100000
12	1	8	0	0	0	. 300000	.034500	0.000000	0.000000	0.000000	1.000000
13	1	9	0	0	0	.300000	. 048516	0.000000	0.000000	0.000000	1.000000
14	1	10	0	0	0	.300000	. 059297	0.000000	0.000000	0.000000	1.004000
15	1	11	0	0	0	. 300000	.07C078	0.000000	0.000000	0.000000	1. 100000
16	1	12	0	0	0	. 300000	. 080659	0.060000	0.000000	0.000000	1.000000
17	1	12	3	5	2	.300000	. 086250	0.000000	0.000000	0.000600	1. 100000
192	7	117	0	0	0	1.075000	. 212122	. $23205 ?$. 000400	. 970317	-. 241835
193	7	110	0	0	0	1.075000	. 198191	-175755	-. 010926	. 970260	-. 241820
194	7	118	3	2	0	1.075000	. 191675	.147607	-.016588	.970184	-.241802

nf (mumber of singularity strength parameters) $=173$
ng (number of panel orientation angles) $=56$

```
    JC - EDGE CONTRCL POINT INCEX
        IPC - PANEL NO. OF CONTROL POINT
        ip - INFLUENCING PANEL NO.
    IS - SIDE NO. OF INFLUENCING PANEL
zX,zY,Zz - gLOBAL COORDINATES OF CONTROL POINT
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline JC 2 & \[
\begin{array}{r}
\text { IPC } \\
1
\end{array}
\] & \[
\begin{gathered}
\text { IF } \\
1
\end{gathered}
\] & \(\mathrm{IS}_{1}\) & \[
\begin{aligned}
& 2 x \\
& .10000000 E+00
\end{aligned}
\] & 0. \({ }^{2 Y}\) & 0. & 22 \\
\hline Jc & IPC & IP & IS & 2X & \(2 \%\) & & 22 \\
\hline 1 & 6 & 6 & 3 & -. \(444089215-15\) & 0. & 0. & \\
\hline Jc & IPC & IP & 15 & \(2 x\) & zr & & Z2 \\
\hline 9 & 6 & 6 & 3 & -10000000E+00 & . \(28750000 \mathrm{E}-01\) & 0. & \\
\hline Jc & IPC & \(1 F\) & IS & \(2 y\) & ZY & & Z 2 \\
\hline 10 & 7 & 7 & 1 & -30000000E+00 & 0. & 0. & \\
\hline Jc & IPC & 1 P & IS & \(2 x\) & \(2 Y\) & & 22 \\
\hline 1 & 6 & 49 & 1 & -.444Ee9215-15 & 0. & 0. & \\
\hline JC & IPC & 1 P & 15 & 2x & \(2 Y\) & & 22 \\
\hline 5 & 6 & 49 & 1 & -1nOOCOCOE 00 & .28750000E-01 & 0. & \\
\hline JC & IPC & \(1{ }^{19}\) & 15 & \(7 x\) & 7Y & & 22 \\
\hline 17 & 12 & 12 & 3 & . \(300000 \mathrm{OE}+00\) & .86250000E-61 & 0. & \\
\hline JC & IPC & \(1{ }^{1}\) & JS & 2x & \(z Y\) & & 22 \\
\hline 16 & 13 & 13 & 1 & . \(50000000 \mathrm{E}+00\) & 0. & 0. & \\
\hline JC & IFC & \(I^{P}\) & IS & \(2 x\) & \(2 Y\) & & 27 \\
\hline 25 & 18 & 18 & 3 & . \(50000000 \mathrm{E}+00\) & . \(14375000 \mathrm{E}+00\) & 0. & \\
\hline JC & IFC & IF & IS & 2 x & \(2 Y\) & & 22 \\
\hline 26 & 19 & 19 & 1 & . \(700000005+00\) & 0. & 0. & \\
\hline JC & IPC & 10 & IS & \(2 \times\) & \(2 Y\) & & 22 \\
\hline 17 & 12 & 57 & 1 & . \(300000008+00\) & .86250000E-0.1 & 0. & \\
\hline
\end{tabular}
```

FIGURE 45 EDGE CONTROL POINT DATA

1F - panel NO.

I.J - ROS ANI COLUMR INOICFS OF THE 9 CANONICAL POINTS X, Y, z - GLCBAL COOPDIAATES OF THE TIVEN POINT

SO - SOURCE SINGULARITY STRENGTH
DO - DCUBLET SINGULARTTY STKENGTH
OX\&DY,DZ - VOQTICITY CONPONENTS JN X, Y YZ DIRECTIONS
OMODN - VORTICITY COMPONENTS IN M,N DIRECTIONS
DKP, DNP - VOPTICITY COMPONENTS IN DIRECTIONS PERPENDICULAR TO M.

NETUORK NO. $=1$ NETNORK TYPE $=2$

SINGULARITY GRID

$1 P$	1	J	x	Y	z	So	00	DX	DY	D2	OM	ON	QMP	ONP
1	1	1	0.00000	0.00000	0.00000	0.00000	.00000	-.00000	. 30504	0.00000	0.00000	-.0000c	0.00000	. 30504
1	2	1	0.00000	0.00000	0.60000	0.00000	. 00000	-.00000	. 30340	0.60000	0.00000	. 02307	0.00000	. 30312
1	3	1	0.0000	0.00000	C.00G00	0.00000	-00000	-.005co	. 29802	0.0000	0.00000	.02561	0.00000	. 29692
1	1	2	- 1 cona	0.00000	0.00000	0.00000	. 03004	0.00000	. 29579	0.00000	. 29579	POPOOOD	-.00000	. $2 ¢ 579$
1	2	2	-10000	. 00431	0.00000	0.00000	.02984	. 07358	. 29744	0.00000	. 29744	. 08632	-. 07358	. 29399
1	3	2	-10000	-0jor63	C.ncouo	0.00000	. 02941	. 14715	. 32281	0.00000	.30281	.17263	-. 14715	. 29905
1	1	3	. 20000	0.00000	0.00000	0.00000	. 05916	. 00507	. 28653	0.00000	.22653	. 00507	-. 00507	-2A653
1	2	3	. 20000	. 00843	0.00000	0.00000	.05865	. 06574	. 28796	0.00000	. 28796	. 07809	-. 06574	- 28496
1	3	3	. 20000	. 01725	0.00000	0.00000	.058C2	. 12642	.29312	0.00000	.29312	. 15114	-. 12642	. 28117
2	1	1	0.00000	-.00000	0.00000	0.00000	. 00000	.00000	. 29802	0.00000	0.00000	. 02561	0.00000	. 29692
2	2	1	0.08000	0.00000	0.00000	0.10000	. 00000	.00000	. 29457	0.00000	0.00000	. 03365	0.00000	- 29264
2	3	1	0.00000	-. 00000	0.00000	0.00000	. 00000	. 00000	. 2RHO7	0.00000	0.00000	.04099	0.00000	. 28519
2	1	2	. 13000	- COE62	0.10000	0.00000	. 02541	. 08804	. 29771	0.00000	. 29771	. 11330	-. 08804	. 22905
2	2	2	-19070	.01150	0.00090	0.00000	. 02904	. 16996	. 30570	0.00000	. 30570	.20378	-. 16996	. 28428
2	3	2	-10000	. 01438	D. OCROO	0.00000	. 028133	.25189	. 31673	0.00000	. 31673	. 27439	-. 25189	. 27767
2	1	3	. 20000	. 01725	0.00000	0.00000	. 05802	.10867	. 29159	0.00000	. 29159	.13332	-. 10867	. 28117
2	2	3	.20000	.02300	0.00000	0.00000	. 05723	. 16686	. 29694	0.00000	. 29694	. 19965	-. 16696	. 27593
2	3	3	. 20000	. 02875	0.00000	0.00000	. 05610	. 22505	. 30533	0.00000	.30533	.26620	-. 22505	. 27020
3	1	1	-. 00000	-.0.J009	0.00500	c. 00000	.00000	-.03cao	. 28807	0.00000	0.00000	. 04059	0.00050	. 28514
3	2	1	0.00000	0.00000	0.00000	0.00000	.00000	-.00000	. 28408	0.00000	0.00000	. 04535	0.00000	. 28044
3	3	1	-. 0.0000	-.00000	0.00000	0.00500	. 00000	-. 00600	. 27794	0.00000	0.00000	. 04915	0.00000	. 27355
3	1	2	. 10000	. 0143 B	0.00000	T. Cecose	.02843	.18064	. 30649	0.00000	. 30649	. 22241	-. 18064	. 277 E7
8	2	2	-10000	.01697	0.00000	0.00000	. 02802	. 27310	. 32053	0.00000	.32053	. 32077	-. 27316	. 27291
3	3	2	.10000	.01797	0.00000	0.00000	. 02745	. 36556	. 33672	0.00000	. 33672	- 41935	-. 36.556	. 26676
3	1	3	. 25000	-C2R75	0.cooico	0.00000	. 05614	. 19940	. 30164	0.00040	. 30164	. 24 [29	-. 19940	. 27020
3	2	3	. 20000	. 03234	D.60000	0.01000	. 05527	. 26417	. 31136	0.00000	.31136	.31048	-. 2 E417	. 26519
3	3	3	-20000	-03594	0.06000	0.00000	. 05421	- 32893	. 32323	0.00000	.32323	. 38091	-. 32893	. 25996

6.3.7 Near Field/Far Field Information (OPTIONAL, IPNPIC=1)

When IPNPIC=1 (Card 18) program VINFCC prints a table of panel influence coefficients count for source and doublet. The counts are listed separately for no influence, monopole far field, dipole far field, quadrupole far field, one subpanel intermediate field, two subpanel intermediate field, and eight subpanel near field.
6.3.8 Out-of-Core Solver Information (OPTIONAL, IPSOLV=1)

When IPSOLV=1 (Card 18), the PTSOLV solution package prints a description of the problem being solved and an error analysis report.

6.4 TAPE14 Save File

A data file is set up on TAPE14 which can be used for post processing or for a solution restart. Network mesh point data is generated during a data check which can be used for post processing graphics. The user must provide his own interface and graphics software. During the iterative solution network and singularity data necessary for a solution restart are saved. Section 7.3 describes the file usage. The TAPE14 format is given in Table 5.

TABLE 4 DEFINITION OF OUTPUT QUANTITIES

QUANTITY	DEFINITION	$\begin{aligned} & \text { WHEN } \\ & \text { PRINTED } \end{aligned}$
	Physical Quantities	Every ITPRINT
JC	Cumulative control point index	iteration,
IP	Index of panel containing control point	initial
(X, Y, Z)	Global coordinates of control point	solution,
	Doublet strength	final iteration
(DX, DY, DZ)	Global Coordinates of surface vorticity vector	
SO	Source strength	
(FSVX, FSVY,	Freestream velocity vector in global	
FSVZ)	coordinates	
PHIU	Upper surface total potential	
(WXU,WYU,	Upper surface total mass flux vector in	
WZU)	global coordinates	
PHEU	Upper surface perturbation potential	
(PWXU, PWYU,	Upper surface perturbation mass flux vector	
PWZU)	in global coordinates	
CPLINU	Upper surface linearized pressure coefficient	
CPSLNU	Upper surface slender body pressure coefficie	
CPSLNDU	Upper surface second order pressure coefficien	nt
CPI2NU	Upper surface isentropic pressure coefficient	
PHIL	Lower surface total potential	
(WXL, WYL,	Lower surface totol mass flux vector in globa	
WZL)	coordinates	
PHEL	Lower surface perturbation potential	
(PWXL, PWYL,	Lower surface perturbation mass flux vector	
PWZL)	in global coordinates	
CPLINL	Lower surface linearized pressure coefficient	
CPSLNL	Lower surface slender body pressure coefficie	nt
CP2NDL	Lower surface second order pressure coefficie	nt
CPISNL	Lower surface isentropic pressure coefficient	
WNU	Normal component of upper surface total mass flux vector	
WNL.	Normal component of lower surface total mass flux vector	
WTU	Magnitude of tangential component of upper sur face total mass flux vector	
WTL	Magnitude of tangential component of lower sur face total mass flux vector	
PHIUI	Upper surface total mass flux potential	
PHILI	Lower surface total mass flux potential	
PWNU	Normal component of upper surface perturbati mass flux vector	
PWNL	Normal component of lower surface perturbati mass flux vector	

QUANTITY	DEFINITION
CPLIND	Difference between upper and lower surface linearized pressure coefficient Difference between upper and lower surface SPSLND
CP2NDD	Difference between upper and lower surface second order pressure coefficient
CPISND	Difference between upper and lower surface isentropic pressure coefficient

WHEN
PRINTED

Forces and Moments Data
Always
Total area of panels
Global coordinates of force coefficient (Upper surface, lower surface, difference) Moment coefficients about global principal axes (Upper surface, lower surface, difference)

> Update Index Arrays

Always
NET
NUP
NAT1
NAT2
NSD1
NSD2
NCR 1
IEDGA1
IEDGA2
KEDG1
KEDG2
MEDG1T
MEDG1F
MEDG2I Row index of point on NAT2 to which initial
Network sequence number Network update index Square number of network to which side 1 of NET is attached
Sequence number of network to which side 4 of NET is attached
Side of NAT1 to which side 1 of NET is attached
Side of NAT2 to which side 4 of NET is attached Leading corner of NSD1 to which side 1 of NET is attached Cumulative index of points on side 1 which have been assigned matching points Cumulative index of points on side 4 which have been assigned matching points Same definition as NAT1 when NAT1 $=0$ Same definition as NAT2 when NAT2 $=0$ Row index of point on NAT1 to which initial point on side 1 of NET is attached Row index of point on NAT1 to which final point on side 1 of NET is attached point on side 4 of NET is attached

TABLE 4 (CONCLUDED)

QUANTITY	DEFINITION WHEN
MEDG2F	Row index of point on NAT2 to which final
	point on side 4 of NET is attached
MEDG1 I	Column index of point on NAT1 to which
	initial point on side 1 of NET is attached
NEDGIF	Column index of point on NAT1 to which final
	point and side 1 of NET is attached
NEDG2 I	Column index of point on NAT2 to which initial
	point and side 4 of NET is attached
NEDG2F	Column index of point on NAT2 to which final point and side 4 of NET is attached
	Singularity Grid Data (ISINGS = 1)
S	Solution singularity parameters
IP	Cumulative index of panel on which
	singularity distribution is evaluated
I	Local row index of evaluation point
J	Local column index of evaluation point
(X, Y, Z)	Global coordinates of evaluation point
SO	Source strength value at evaluation point
DO	Doublet strength value at evaluation point
(DX, DY, DZ)	Global coordinates of surface vorticity vector at evaluation point
(SM, SN)	Derivative of doublet strength in (row, column) directions respectively
(SMP , SNP)	Derivative of doublet strength in directions
	normal to (row, column) directions respect-

TABLE 5 TAPE14 FORMAT

(1) When \$DATA CHECK is specified, the following FORTRAN statements in program INPUT are used to save network mesh points on NSAV=TAPE14 (format 6F10.5):

FNT $=$ NNETT
WRITE (NSAV, 1030) FNT
1030 FORMAT (6 F10.5)
DO $1070 \mathrm{~K}=1$, NNETT
$N M K=N M(K)$
$\mathrm{NNK}=\mathrm{NN}(\mathrm{K})$
$F M=N M K$
FN = NNK
WRITE (NSAV, 1030) FM,FN
DO $1060 \mathrm{~J}=1$, NNK
$J M=(J-1) * N M K+N Z A(K)$
WRITE (NSAV, 1030) (ZM (1, I+JM), ZM (2,I+JM), ZM (3, I+JM), I = 1 , NMK)
1060 CONTINUE
1070 CONTINUE
(2) When \$ITERATION or \$LEAST SQUARES ITERATION is specified, the network mesh points and values of singularity parameters for the current iteration (no. JT) are saved on NSAV=TAPE14 (unformatted) using the following FORTRAN statements:

```
NNETP1 = NNETT + 1
REWIND NSAV
WRITE (NSAV) JT
WRITE (NSAV) NNETT, NSNGT, NZMPT, NNETP1
WRITE (NSAV) (NZA(I), I = 1, NNETP1)
WRITE (NSAV) (ZM(1,J), ZM(2,J), ZM (3, J), J = 1, NZMPT)
WRITE (NSAV) (S(I), I = 1, NSNGT)
```


7.0 COMPUTER PROGRAM DESCRIPTION

This computer program is written in the CDC FORTRAN Extended (FTN4) language for the CDC Network Operating System (NOS). It uses overlay structures and fourteen disk files which include the standard system files INPUT (TAPE5) for card reading and OUTPUT (TAPE6) for printing. The program has been checked out and run on the Langley Research Center's CDC CYBER series computers.

The computer code implements recent advances in the solution of three-dimensional flow over wings with leading edge vortex separation. It has been designed and developed for the purpose of performing numerical experiment studies with the flow model.

The code includes two iterative solution procedures: (i) Quasi-Newton scheme and (ii) Least Squares Method. The least squares procedure for damping vortex sheet geometry update instabilities was developed to alleviate the convergence problem for certain cases using the Quasi-Newton'iterative scheme. It is restricted to run smaller problems (see discussion in User's Input Guide) in the present set up and takes more computational time to execute. In the future, we hope to further develop the least squares procedure so that it can be used to execute larger problems as well as taking less computational time.

7.1 Basic Program Structure

The computer program consists of one main overlay, six primary overlays, three secondary overlays and one user library. A schematic diagram of basic program structure is illustrated in Figure 47.

7.2 Description of Overlay Programs

The following is a discussion of the overlay programs. A detailed flow chart of the main over lay program A378 is shown in Figure 48.
7.2.1 OVERLAY (MAIN, 0,0)

Main OVERLAY (MAIN, 0,0)
Program A378
Purpose To perform various tasks by calling the following overlay programs and subroutines:
o Program INPUT to process the input data and set up network mesh points
o Program CONF IG to compute panel geometry, panel singularity distribution and panel control points defining quantities
$0 \quad$ Program VINFCC to calculate and store induced potential and velocity coefficients

FIGURE 47 BASIC PROGRAM STRUCTURE

FIGURE 48 CONCLUDED

- Subroutine INIMU to compute initial values for singularity strength parameters
o Program OUTPUT to calculate and print the singularity grid and the physical flow quantities for each network
o Subroutine JTFLOW to perform subiteration for a solution of singularity strength parameters
o Subroutine ITFLOW using Quasi-Newton scheme to find an iterative solution to the flow problem
o Subroutine LSFLOW using Least Squares Method to find an iterative solution to the flow problem

The main overlay program A378 first sets up data blocks for transferring among the overlay programs and also initializes the data. At the beginning of the execution of the code, disk files except system files INPUT (TAPE5), OUTPUT (TAPE6), and random access file (TAPE4) are rewound. The code then reads and prints a list of the input data cards. Program INPUT is first called to process the input data and set up network mesh points. Next program CONFIG is called to compute panel geometry, panel singularity distribution and panel control points defining quantities by using the secondary overlay programs TGEOMC, TSING and TCNTRL. Induced potential and velocity influence coefficients, are then calculated via program VINFCC.

If the input data indicates no previous iteration results are to be used, then the code calls subroutine INIMU to calculate the initial singularity strength parameters values. Otherwise, the code reads in the values provided by the user on disk file TAPE14. If no iteration is requested, then program OUTPUT is called to calculate and print the singularity grid, physical flow quantities, and mesh points for each network.

If the user requests only the subiteration then the code calls subroutine JTFLOW for an iterative solution of the singularity strength parameters values, and program OUTPUT for printing the results of physical flow quantities and network mesh points.

When full iteration using Quasi-Newton scheme or least squares method is requested, then the code will proceed after the subiteration being exercised to find an iterative solution to the flow problem by using either subroutine ITFLOW or subroutine LSFLOW.

7.2.5 OVERLAY (N	(NETGCS, 2,2)
Secondary OV	OVERLAY (NETGCS, 2,2)
Program TS	TSING
Purpose To	To compute panel singularity distribution defining quantities for all networks
Discussion $\begin{array}{cc}\text { (}\end{array}$	The code calls various routines depending on the type of each network to compute panel singularity distribution defining quantities:
	o Routine SING for type 1 network
	o Routine DASPL for type 2 network
	- Routine DDSPL for type 4 network
	o Routine DSDSPL for type 6 network
	- Routine DWSPL for type 8, 10, 14, 16 network
	It also sets up arrays containing number of singularity parameters in each network (NS (K)), and accumulated sum of NS(NSA(K)), and obtains the total number of singularity parameters (NSNGT) for all networks.
7.2.6 OVERLAY (NETGCS, 2,3)	
Secondary OVERLAY (NETGCS, 2,3)	
Program TC	TCNTRL
Purpose To	To compute panel control points defining quantities for all networks
Discussion $\begin{array}{ll}\text { Th } \\ & \text { co } \\ & \text { set } \\ & \text { ne } \\ & \text { ob } \\ & \text { ne } \\ & \text { con } \\ & \text { co } \\ & \text { to }\end{array}$	The code calls subroutine CONTRL for each network to compute panel control points defining quantities. It also sets up arrays containing number of control points in each network (NC(K)) and accumulated sum of NC (NCS(K)), and obtains the total number of control points (NCTRT) for all networks. Next, defining quantities of some special control points used for calculating fed sheet force are computed by calling subroutine CONFRC. The sum of the total number of these special control points and that of the original control points is given as a parameter NCTRTE.

7.2.7 OVERLAY (AICGEN, 3,0)

Primary OVERLAY (AICGEN, 3,0)
Program VINFCC
Purpose To calculate and store induced potential and velocity coefficients

Discussion The code first obtains far field moments for hyperboloidal panels by calling subroutine FFHPMG. It starts to compute the potential/velocity influence coefficients by storing defining quantities for a group of control points in the available core of a scratch array. Then it proceeds to calculate panel influence coefficients by looping through all panels for that group of control points. After these calculated influence coefficients are being stored in a random access disk file, the code goes back to store defining quantities for another group of control points and perform the same calculation as described before. This process terminates when it is done with all control points. At the very first call of this overlay, all of the influence coefficients wil be computed and stored in a random access disk file. After that, only the part of the influence coefficients affected by the perturbation of geometry will be calculated and replaced on the random access disk file. This cost saving scheme is controlled by a parameter NRAIC passing through the common block REAIC.

The potential/velocity influence coefficients of those special control points used for fed sheet force calculation are also obtained in this overlay program via subroutine AICFOR. Finally, information for far field, intermediate field, and near field are provided when requested by the user (IPNPIC=1).
7.2.8 OVERLAY (JACGEN, 4,0)
Primary OVERLAY (JACGEN, 4,0)

Program AJGEN
Purpose To calculate and store the analytic Jacobian matrix.
Discussion The code first sets the row and column dimensions of the Jacobian matrix according to the type of iteration requested:
(i) Subiteration (NDZA=0) - iteration performed only on the singularity strength parameters
(ii) Iteration without force boundary condition (NDZA $=1$) iteration performed on the singularity strength parameters and panel orientation angles
(iii) Full iteration (NDZA=2) - iteration performed on the singularity strength parameters, panel orientation angles, and geometry parameters λ and v.
(iv) Least Squares iteration (NDZA=3) - iteration performed on all the parameters with additional equations consisting of twist function

If it is not subiteration (NDZA=0), a subroutine ZTHET is called to calculate and store perturbation of network mesh points with respect to panel orientation angle and geometry parameters λ and v. The major part of the code is the loop that ranges over all regular control points to compute the Jacobian corresponding to the equations of the function F (see section 4.3) and store it by row on the disk file NSC3. For those interior control points at the network with update index greater than 3, it also calculates rows of Jacobian corresponding to the function G and saves on a scratch disk file if NDZA is not zero. Later, these rows of Jacobian are transferred and stored behind the Jacobian matrix corresponding to the function F. If full iteration is requested, the code computes rows of Jacobian corresponding to the function H (force boundary condition) via subroutine DFRC and stores also on the disk file NSC3.

The code will compute and store rows of Jacobian corresponding to the function K (twist function) via subroutine DKCAL when it is desired to have least squares iteration.

7.2.9 OVERLAY (SOLVER, 5,0)	
Primary	OVERLAY (SOLVER, 5,0)
Program	TINVER
Purpose	To provide an interface for using a large out-of-core equations solver
Discussion	The input coefficient and right-hand side matrices are read in by row, and written into square blocks on a random access disk file via subroutine BLOCKR. The code sets up the argument list and calls the out-of-core equations solver PTSOLV. The solution matrix obtained from the solver is then unblocked and written by row on the disk file NANS via subroutine RBLOCK.

OVERLAY (RESULT, 6,0)	
Primary	OVERLAY (RESULT, 6,0)
Program	OUTPUT
Purpose	To compute and print or save on a disk file the following quantities:
	- Network mesh points and values of singularity strength parameters for each iteration
	o Singularity grid (singularity strength and derivatives at 9 canonical points on each panel) on each network for diagnostic purpose
	o Physical flow quantities of interest such as average, upper and lower surface potentials and velocities, singularity strength and gradient, and upper, lower and difference pressure coefficients, force and moment coefficients for each network
	- Printer plot for cross sections of vortex systems
Discussion	At the beginning of the code, current iteration number, network mesh points and values of singularity strength parameters are saved on a disk file NSAV. These results could be used to restart another run later for more iterations. If diagnostic option (ISINGS=1) is chosen, singularity strength and derivatives at 9 canonical points on each panel are computed and printed along with the global coordinates of the representative points for each network.
	The next major portion of the code is to compute and print various physical flow quantities for all panel center control points on each network. Physical flow quantites of interest include average, upper and lower surface potentials and velocities, singularity strength and gradient, and upper, lower and difference pressure coefficients. The pressure coefficients are also stored for use in computing network force and moment coefficients by calling the subroutine FMCAL.
	Finally, a printer plot for cross sections of vortex system (when IPLOTP=1) and a list of network mesh points are given as part of the output for each iteration.

7.3 File Usage

There are fourteen disk files used in the computer program. They all have symbolic names except TAPE4 which is used as a random access file. The following table shows the common block through which the disk file is passed, program or subroutine that uses it, and how it is being used.

$\begin{aligned} & \text { Disk } \\ & \text { No. } \end{aligned}$	Symbolic Name	Common Block	Program Subroutine	Usage
8	NRHS	SOLNT	INIMU, ITFLOW, JTFLOW LSFLOW	Store the right-hand side matrix by row; also serve as a scratch file in LSFLOW for temporary storage
			BLOCKR	Retrieve the right-hand side matrix stored by rows for setting up square blocks to be used by the out-of-core equations solver
9	NANS	SOLNT	RBLOCK	Store the solution matrix by row
			A378, ITFLOW, JTFLOW	Retrieve the solution matrix stored by row
			CTRS LSFLOW	Retrieve the solution matrix stored by row, and store it by column Retrieve the solution matrix stored by columns
10	NSC1	SOLNT	BLOCKR	Random access file declared in TINVER Store square blocks of the coefficient and the right-hand side matrices for the out-of-core equations solver
			PTDCOM, PTFSUB, etc.	Retrieve square blocks of the coeff_ cient and the right-hand side matrices, and store square blocks of the solution matrix
			RBLOCK	Retrieve square blocks of the solution matrix from the out-of-core equations solver
			CTRS	Serve as a scratch file for storing matrix by blocks
11	NSC2	SOLNT	BLOCKR	Random access file declared in BLOCKR Serve as a scratch file for setting up square blocks of input matrixes which are originally stored by row
12	NSC3	SOLNT	IN IMU AJGEN ITFLOW	Store the coefficient matrix by row Store the Jacobian matrix by row Retrieve the Jacobian matrix stored by row; also store the updated Jacobian matrix by row
			BLOCKR	Retrieve the coefficient or Jacobian matrix stored by row for setting up square blocks to be used by the out-of-core equations solver

Disk No.	Symbolic Name	Common Block	Program Subroutine	Usage		
13	NSCR	SOLNT	ITFLOW	Serve as a scratch file for storing the Jacobian matrix		
			LSFLOW	Store the part of the Jacobian matrix corresponding to the function F		
			AJGEN	Serve as a scratch file for storing rows of Jacobian corresponding to the function G.		
14	NSAV	CM03	INPUT	Save network mesh points when \$DATA CHECK is specified		
			OUTPUT	Save iteration no., part of network indices, network mesh points, values of singularity parameters		
			INPUT	Retrieve iteration no., part of network indices, network mesh points from previous iteration results		
			A378	Retrieve values of singularity parameters from previous iteration results		
The computer program uses the following CDC system utilities for random access files:						
OPENMS - declare a disk file to be random CLOSMS - close a random access file READMS - read a random access record WRITMS - write a random access record						

7.4 Common Block Definition

Variables of the more essential common blocks shared by overlay programs and subroutines are defined below.

Common Block	Variables	Description
ACASE	ALPHA	Angle of attack in degrees
	BETA	Yaw angle in degrees
	FSVM	Magnitude of free stream velocity
	FSV	Free stream velocity vector
	OMEG	Roll rate vector
	RC	Center of rotation
ADR	RTD	Degrees in unit radian
	DTR	Radians in unit degree
AICQ	Q	$Q(I, K)=$ dependence of Ith Taylor's series coefficient of panel doublet distribution on Kth canonical panel doublet value
	B	Dependence of coefficient of linear distribution on triangle on values at
		vertices
	C	Dependence of coefficients of quadratic distribution on triangle on values at vertices and edge lambdas
	D	Dependence of coefficients of reduced cubic distribution on triangle on values at vertices and center and edge lambdas
	AR	Transformation matrix from global to local coordinates
	ARI	Inverse of AR
	ARP	Matrix transforming combined potential/velocity vector from local to global coordinates
	X	Local coordinates of control point
	DU	Dependence of potential/velocity vector in local coordinates on source distribution coefficients
	DV	Dependence of potential/velocity vector in local coordinates on doublet distribution coefficients
	DVP	Dependence of potential/velocity vector in global coordinates on doublet distribution coefficients
	PC	Hyperboloidal panel geometry coefficient vectors
	EN	Unit normal (in global coordinates) to plane panel
	P	Local coordinates of panel corner points

Common Block		
	Variables	Description
	ZET	Hyperboloidal panel geometry coefficient vectors in local coordinates
	ZSTP	Parameter values corresponding to ZP
	ZP	Average of triangle corner points
	R	Dependence of coefficients of reduced cubic doublet distribution on 9 canonical panel doublet parameters
	DS	Dependence of doublet strength and vorticity at a point on 9 canonical doublet parameters
ANGLEN	ZA	Panel orientation angles for free sheet network
	ZL	Panel edge length along spanwise cut for free sheet network
	ZAF	Panel orientation angles for fed sheet network
	ZLF	Panel edge lengths along spanwise cut for fed sheet network
	ALAM	Geometry parameter $\boldsymbol{\lambda}$
	ANU	Geometry parameter ν
	NZAT	Total number of panel orientation angles for free sheet networks
	NZAFT	Total number of panel orientation angles for fed sheet networks
BCARY	XX	(1) - Potential
		$(2,3,4)$ - Velocity vector
		(5) - Source strength
		(7,8,9) - Vorticity vector
		(10,11,12) - Unit upper surface normal \hat{n} (13,14,15) - Control point \bar{z}
		(16,17,18) - Upper surface normal \bar{n}
		(19,20,21) - Normal vector to panel edge v $(22,23,24)$ - Panel edge vector $\hat{\mathrm{Z}}$
	F	value of analysis boundary condition (ANLBC), or design boundary condition
	FX	Perturbation of boundary condition with respect to each of the variables XX
	GG	Vector of panel force boundary condition (SFCBC and EGFBC)
	GX	Perturbation of panel force boundary condition with respect to each of the
		variables XX
	EX	$(1, J)$ - Perturbation of force boundary condition fy with respect to Jth variable of $X X$

Common Block	Variables	Description
		(2, J) - Perturbation of force boundary condition $f z$ with respect to Jth variable $X X^{2}$
	NX	24
	NX2	48
	NX3	72
CMO3	NTSIN	Standard system file INPUT for card reading
	NTSOUT	Standard system file OUTPUT for printing
	NSAV	Disk file to save intermediated iteration results
CM05	ERROR	Error code from subroutine RHEAD or WHEAD
	IPASS	Code for by passing the opening of random access file NSC2
	JPASS	Code for by passing the opening of random access file NSC2
CNTRL	ZC	Control point $\overrightarrow{\mathbf{z}}$
	ENC	Upper surface normal \vec{n}
	ZNC	Unit upper surface normal \hat{n}
	ZNCG	$\hat{n} \otimes \nabla \mathrm{f}$
	ZCP	Perturbation of control point with respect to panel corner points \vec{P}_{i}
	ENCP	Perturbation of \vec{n} with respect to panel corner points \vec{P}_{i}
	ZNCP	Perturbation of \hat{n} with respect to panel corner points \vec{P}
	ZNCGP	Perturbation of $\hat{n} \otimes \nabla f$ with respect to panel corner points \vec{P}_{j}
	AN	Normal vector to panel edge $\vec{\nu}$
	EL	Panel edge vector \bar{l}
	ANP	Perturbation of \bar{v} with respect to panel corner points \vec{p}
	ELP	Perturbation of $\bar{\ell}$ with respect to panel corner points $\vec{P}_{\mathbf{i}}$
CNTRQ	ZSTC	Parameters s and t of control point \vec{Q}_{0}, $\overrightarrow{\mathrm{Q}}_{s}, \overrightarrow{\mathrm{Q}}_{t}, \overrightarrow{\mathrm{Q}}_{\text {st }}$ for the hyperboloidal panel of control point
	ICH	Edge control point characterization $=0$ Real
		$=1$ Doublet value matching $=2$ Doublet normal derivative matching $=3$ Doublet tangential derivative matching
	I PC	Panel no. of control point
	ISC	Side no. of edge control point
	IZC	Control point index along an edge
	JCN	Control point index

Common		
Block		
	Variables	Description
	KC	Network no. of control point
COMPRS		
	AMACH	Mach number Mos
	BETAMS	$1-$ M2 $_{\infty}$

Common

Block
EGMTCH

Variables
ISDCHR

IRCHR

Description
Network edge control point characterization
$=0 \quad$ No control point
$=1$ to $4 \quad$ Control point matches doublet strength along abutment to which side 1 to 4 belongs
$=5 \quad$ Control point forces doublet strength to vanish
$=-1$ to -4 Control point matches vorticity parallel to edge along abutment to which side 1 to 4 belongs

Network corner control point characterization
$=0 \quad$ No control point
$=1$ to $4 \quad$ Control point matches doublet strength along abutment to which side 1 to 4 belongs
$=5 \quad$ Control point forces doublet strength to vanish
$=-1$ to -4 Control point matches vorticity parallel to edge along abutment to which side 1 to 4 belongs

FMCOF XREF
YREF
ZREF
SREF
BREF
CREF
DREF
INDEX
NT
NM
NN
NZ
NP
NS
NC
NZA
NPA
NSA
NCA
NNETT
NZMPT
X, Y, Z coordinates of moment center

Configuration reference area
Reference span
Reference chords
Reference height
Network type
Network row number
Network column number
Network mesh points number
Network panels number
Network singularity strength parameters number
Network control points number
Accumulated network mesh points number
Accumulated network panel numbers
Accumulated network singularity strength parameters number
Accumulated network control points number
Total number of networks
Total number of mesh points

Common Block	Variables	Description
	NPANT	Total number of panels
	NSNGT	Total number of singularity strength parameters
	NCTRT	Total number of regular control points
	NCTR TE	Total number of regular and special control points
INDX	I NDX	Key indices for random access file TAPE4
LSINGC	DSDFS	Vector relating source strength σ to neighboring singularity parameters
	DDDFS	Matrix relating doublet strength μ and $\hat{n} \otimes \nabla \mu$ to neighboring singularity
	DD	parameters Matrix relating doublet strength μ and $\hat{n} \otimes \nabla \mu$ to the 9 canonical panel doublet
		parameters
MSPNTS	ZM	Mesh points coordinates
LSINGV	SLV	Vector consisting of source strength σ, doublet strength μ and $\hat{n} \otimes \nabla \mu$ at a control point
	SLVP	Perturbation of source strength σ, doublet strength μ, and $n \otimes \nabla \mu$ with respect to panel corner points
LSQSFC	ZK	X, Y, Z coordinates of mesh points used in least squares fit
	WTK	Weights used in least squares fit
	AK	Generalized inverse from least squares fit
	NO	$=2$ for quadratic fit (6 terms) < 2 for linear fit (3 terms)
	NPK	Number of data points used in least squares fit
NCONS	PI	π
	PI2	2π
	PI4I	$1 / 4 \pi$
	AKAP	4π
NFAJ	NF	Number of singularity strength parameters
	NG	Number of panel orientation angles
	NH	Number of geometry parameters and
	NFG	$N F+N G$
	NGH	$N G+N H$
	NF GH	$N F+N G+N H$

Common		
Block	Variables	Description
	NK	Number of equations of twist function
	NGHK	$N G+N H+N K$
	NKGHK	$N F+N G+N H+N K$
NITF	JT	Iteration No.
	ITMX	Maximum number of iterations requested by the user
	JTP	$=0$ Printing of detail physical flow quantities
		= 1 Printing of type 1 or 2 force/moment data only
	ITPR IN	Printing of detail physical flow quantities occurs at every ITPRIN iteration
	NDZA	Type of iteration $=0$ subiteration
		$=1$ Iteration without force boundary condition
		$=2$ Full iteration using Quasi-Newton scheme
		$=3$ Full iteration using least squares method
	ITCODE	Code for data check and type of iteration
		$=0$ $=1$
		$=2$ Full iteration using Quasi-Newton scheme
		$=3$ Full iteration using Least Squares method
	ITVRCP	Printing code for variables, residuals and corrections of full iteration results $=1$ Printout $=0$ No printout
PANDQ	CP	Corner points of the given panel in reference coordinates
	PC	$\vec{Q}_{0}, \vec{Q}_{S}, \vec{Q}_{t}, \vec{Q}_{s t}$ of the given panel
	AQ	Transformation matrix from reference to panel near plane coordinates
	AQI	Inverse of AQ
	DIAM	Diameter of the given panel
	AST	Matrix relating 9 canonical doublet μ or 3 linear source σ to neighboring
		singularity parameters
	ITS	Index array for neighboring singularity parameters
	INS	Number of neighboring singularity

Common Block	Variables	Description
	NCS	Number of parameters (quadratic or linear coefficients) defining panel doublet or source distribution
	ITS	Panel singularity type
		$=1$ Source $=2$ Doublet
	ICS	Index of collasped side, and is equal to 0 if no collapsed side
	IPN	Index of the given panel
	KP	Network number of the given panel
PIVM	DVDS	Potential and velocity vector at a control point induced by singularity distribution on a panel
	AMU	9 canonical doublet μ or 3 linear
	DVDZ	source σ strength parameters Perturbation of potential and velocity vector with respect to the given control point
	DVDP	Perturbation of potential and velocity vector with respect to the corner points of a panel
PRNT		All variables in this common block are printing codes for diagnostic purpose, $=1$ Printout $=0$ No printout
	IGEOMP	Panel defining quantities
	ISINGP	Panel singularity distribution defining quantities
	ICONTP	Panel control points defining quantities
	IBCONP	Boundary conditions
	ISINGS	Singularity grid on each network
	IPLOTP	Printer plot of cross sections of vortex sheet
	IPTIME	Elapsed CPU time for various programs and subroutines
	IPRAIC	Influence coefficients for each control point
	IPAJAC	Analytic Jacobian
	IPNPIC	Far field and near field information
	IPSOLV	Out-of-core equations solver information

Common Block	Variables	Description
PRWI	NPDQ	Number of panel defining quantities
	NSP	Number of panel defining quantity blocks in buffer
	NRP	Current record in buffer
	NTP	File on which panel defining quantity blocks are stored
REAIC	NRAIC	$=0$ All influence coefficients will be
		computed $=1$ Part of the influence coefficients affected by the perturbation of geometry will be recomputed
SKRCHS	PANQ	Buffers containing multiple blocks of panel and singularity distribution defining quantities
	CNTQ	Buffers containing multiple blocks of control point defining quantities
	DMUQ	Buffer containing temporary multiple blocks of panel defining quantities; buffer containing multiple blocks of singularity spline derivatives
SKRCH1	DUMSK1	Scratch array
SOLN	S	Singularity (doublet and/or source) strength
SOLNT	NAIC	
	NRHS	
	NANS	
	NSC1	Disk files (see File Usage)
	NSC2	
	NSC3	
	NSCR	
	IRAY	Array containg input specification for out-of-core equations solver
		(1) - Number of words in the scratch array
		(2) - I/O device for the coefficient matrix
		(3) - File argument for coefficent matrix
		(5) - File argument for solution matrix
		(6) - Scratch I/0 device (7) - Scratch I/O device

Common Block

SRWI NSDQ
NSS
NRS NTS

SYMM NSYMM

TFMQ	FC
	FMC
UPDIND	TCA
	NUP

ZMD
ZMTH
ZMAL
NZMTHA
NZMALM

Description
(8) - Not used
(9) - I/0 matrix for the right-hand side matrix
(10) - File argument for right-hand side matrix

Title of solution
Number of panel and singularity spline defining quantities
Number of panel and singularity spline defining quantity blocks in buffer Current record in buffer
File on which panel and singularity spline defining quantity blocks are stored
$=1$ for asymmetric about X-Z plane = 0 otherwise

Accumulated force coefficients of networks Accumulated moment coefficients of networks Accumulated surfaces area of networks Network update index
($1, \mathrm{~K}$) - Sequence no. of network to which side 1 of Kth network is attached
(2,K) - Sequence no. of network to which side 4 of Kth network is attached
(1,K) - Side no. of network to which side 1 of Kth network is attached
(2,K) - Side no. of network to which side 4 of Kth network is attached
($1, K$) - Leading corner point no. of network to which side 1 of Kth network is attached
(2,K) - Leading corner point no. of network to which side 4 of Kth network is attached

Dependence of corner point coordinates on thetas
Dependence of corner point coordinates on lambdas and nus
Cumulative number of thetas in each network
Cumulative number of lambdas and nus in each network

7.5 Linkage Map of Overlay Programs and Subroutines

In the following map, the subroutines followed with * are CDC system routines.
(This linkage map is obtained from using a program CALLMAP written by Gary Bills of Boeing Computer Services Company.)

7.5.1 MAP OF OVERLAY (MAIN, 0, 0)

MAP OF DVERLAY(MAIN, O,O)
ENTRY PT. A378V8

MAP DF OVERLAY(MAIN,O,O)
ENTRY PT. A378VB


```
    MAP OF OVERLAY(MAIN,0,0)
ENTRY PT. A378V8
```

(

MAP OF OVERLAY(MAIN, O,O)
ENTRY PT. A378V8

MAP OF OVERLAY(MAIN,0,0)
ENTRY PT. A378V8

MAP OF OVERLAY(MAIN,O,O)
ENTRYPT. A378V8

MAP Of OVERLAY(MAIN,0,0)
ENTRY PT. A378V8


```
MAP OF OVERLAY(MAIN,0,0)
ENTRY PT. A378V8
```



```
    MAP OF OVERLAY(HAIN,O,O)
ENTRY PT. A378VB
```



```
MAP DF DVERLAY(HAIN, O, O)
```

ENTRY PT. A378Y8


```
MAP OF OVERLAY(HAIN,0,0)
```

ENTRY PT. A378V8

7.5.2 MAP OF OVERLAY (DATA, 1, 0)

```
MAP OF OVERLAY(DATA,1,0)
ENTRY PT. INPUT
```


MAP OF GVERLAY(DATA,I,O)
ENTRY PT. INPUT

7.5.3 MAP OF OVERLAY (NETGCS, 2, 0)

HAP UF OVERLAY(NETGCS,2,0):
ENTRY PT. CONFIG

CUNFIG—OVERLAY*(2,1),(2,2),(2,3)

7.5.4 MAP OF OVERLAY (NETGCS, 2, 1)

```
MAP OF OVERLAY(NETGCS,2,1):
entry pt. tGEOMC
```


7.5.5 MAP OF OVERLAY (NETGCS, 2, 2)

```
    mAP 0IF OVERLAY(NETGCS,2,2):
    ENTRY PT. TSING
```


MAP OF OVERLAY(NETGCS,2,2):
ENTRY PTE TSING

MAP DF OVERLAY(NETGCS, 2,2):
ENTRY PT. ISING

MAP OF OVERLAY(NETGCS,2,2):
ENTRY PT. TSING


```
MAP DF OVERLAY(NETGCS,2,2):
```

ENTRY PT. TSING

MAP OF DVERLAY(NETGCS,2,2):
Entry Pt. tSing

7.5.6 MAP OF OVERLAY (NETGCS, 2, 3)

```
mAP Of OVERlAY(NETGCS,2,3):
ENTRY PT. TCNTRL
```


7.5.7 MAP OF OVERLAY (AICGEN, 3, 0)

```
    MAP OF OVERLAY(AICGEN,3,0):
```

ENTRY PT. VINFCC


```
MAP OF OVERLAY(AICGEN, 3,0):
```

ENTRY PT, VINFCC

MAP OF OVERLAY(AICGEN, 3,0):

ENTRY PTE VINFCC

-CAMAB
-WRITMS*

map of overlay (aicgen, 3,0):
 ENTRY PT. VINFCC

MAP OF OVERLAY (AICGEN, 3,0):
 ENTRY PT. VINFCC


```
7.5.8 MAP OF OVERLAY (JACGEN, 4, 0)
    MAP DF OVERLAY(JACGEN,4,0):
ENTRY PT, AJGEN
```


MAP DF OVERLAY(JACGEN, 4,0):
EHTRY PT. AJGEN

map of overlay (Jacgen, 4,0)s
ENTRY PT. AJGEN

MAP OF DVERLAY(JACGEN, 4,0):
ENTRY PT. AJGEN


```
    MAP OF OVERLAY(JACGEN, &,OTZ
ENTRY PT. AJGEN
```



```
MAP DF DVERLAY(JACGEN,4,0):
ENTRY PT. AJGEN
```


-UNIT*

MAP OF OVERLAY(JACGEN, 4,0):

ENTRY PE. AJGEN


```
    MAP DF OVERLAY(JACGEN,4,0)&
ENIRY PT. AJGEN
```



```
    mAP OF DVERLAY(JACGEN,4,0):
ENTRY PT. AJGEN
```



```
MAP OF GVERLAY(JACGEN,4,0):
```

ENTRY PT. AJGEN


```
    MAP OF OVERLAY(JACGEN,4,0):
Entry PT. AJGEN
```


MAP UF DVERLAY (JACGEN,4,0) 8
Entry pi. ajgen

MAP OF OVERLAY(JACGEN, 4,0):
ENTRY PT. AJGEN

7.5.9 MAP OF OVERLAY (SOLVER, 5, 0)

MAP DF OVERLAY(SOLVER, 5,0):
ENTRY PT. TINVER

MAP OF DVERLAY(SOLVER,5,0):
ENTRY PT. TINVER

7.5.10 MAP OF OVERLAY (RESULT, 6, 0)

map df overlay (resulat, 6,0):
f.ntry pt. output

MAP OF OVERLAY(RESULT, 6,0):

ENTRY PT. OUTPUT

REFERENCES

1. Maskell, E. C., "Some Recent Developments in the Study of Edge Vortices," Proceedings of 3rd Congress of Int. Counc. Aero. Sci., 1962, pp 737-749, Spartan Books, Inc., Washington, 1964.
2. Peckham, D. H., "Low-Speed Wind-Tunnel Tests on a Series of Uncambered Slender Pointed Wings with Sharp Edges," RM 3186, British Aeronautical Research Council, 1961.
3. Smith, J. H. B., "Improved Calculations of Leading-Edge Separation from Slender Delta Wings," RAE Tech. report 66070, March 1966.
4. Tinoco, E. N. and Yoshihara, H., "Subcritical Drag Minimization of Highly Swept Wings with Leading Edge Vortices," Paper No. 26, AGARD-CP-247, January 1979.
5. Wentz, W. H., "Effects of Leading Edge Camber on Low-Speed Characteristics of Slender Delta Wings," NASA CR-2002, 1972.
6. Kuhlman, J. M., "Analytical Studies of Separated Vortex Flow on Highly Swept Wings," NASA CR-3022, November 1978.

[^0]
[^0]: *For sale by the National Technical Information Service. Springtield, Virginia 22161

