2,215 research outputs found

    Optical constraints of kerogen from 0.15 to 40 microns: Comparison with meteoritic organics

    Get PDF
    Kerogens are dark, complex organic materials produced on the Earth primarily by geologic processing of biologic materials, but kerogens have chemical and spectral similarities to some classes of highly processed extraterrestrial organic materials. Kerogen-like solids were proposed as constitutents of the very dark reddish surfaces of some asteroids and are also spectrally similar to some carbonaceous organic residues and the Iapetus dark material. Kerogen can thus serve as a useful laboratory analog to very dark, spectrally red extraterrestrial materials; its optical constants can be used to investigate the effects of particle size, void space and mixing of bright and dark components in models of scattering by dark asteroidal, cometary, and satellite surfaces. Measurements of the optical constants of both Type 2 kerogen and of macromolecular organic residue from the Murchison carbonaceous chondrite via transmission and reflection measurements on thin films are reported. The real part of the refractive index, n, is determined by variable incidence-angle reflectance to be 1.60 + or - 0.05 from 0.4 to 2.0 micrometers wavelength. Work extending the measurement of n to longer wavelengths is in progress. The imaginary part of the refractive index, k, shows substantial structure from 0.15 to 40 micrometers. The values are accurate to + or - 20 percent in the UV and IR regions and to + or - 30 percent in the visible. The k values of organic residues were also measured from the Murchison meteorite. Comparison of the kerogen and Murchison data reveals that between 0.15 and 40 microns, Murchison has a similar structure but no bands as sharp as in kerogen, and that the k values for Murchison are significantly higher than those of kerogen

    Direct observation of acoustic phonon mediated relaxation between coupled exciton states in a single quantum dot molecule

    Get PDF
    We probe acoustic phonon mediated relaxation between tunnel coupled exciton states in an individual quantum dot molecule in which the inter-dot quantum coupling and energy separation between exciton states is continuously tuned using static electric field. Time resolved and temperature dependent optical spectroscopy are used to probe inter-level relaxation around the point of maximum coupling. The radiative lifetimes of the coupled excitonic states can be tuned from ~2 ns to ~10 ns as the spatially direct and indirect character of the wavefunction is varied by detuning from resonance. Acoustic phonon mediated inter-level relaxation is shown to proceed over timescales comparable to the direct exciton radiative lifetime, indicative of a relaxation bottleneck for level spacings in the range $\Delta E\$ ~3-6 meV.Comment: 6 pages, 4 figures, submitted for publicatio

    Optical constants of solid methane

    Get PDF
    Methane is the most abundant simple organic molecule in the outer solar system bodies. In addition to being a gaseous constituent of the atmospheres of the Jovian planets and Titan, it is present in the solid form as a constituent of icy surfaces such as those of Triton and Pluto, and as cloud condensate in the atmospheres of Titan, Uranus, and Neptune. It is expected in the liquid form as a constituent of the ocean of Titan. Cometary ices also contain solid methane. The optical constants for both solid and liquid phases of CH4 for a wide temperature range are needed for radiative transfer calculations, for studies of reflection from surfaces, and for modeling of emission in the far infrared and microwave regions. The astronomically important visual to near infrared measurements of solid methane optical constants are conspicuously absent from the literature. Preliminary results are presented on the optical constants of solid methane for the 0.4 to 2.6 micrometer region. Deposition onto a substrate at 10 K produces glassy (semi-amorphous) material. Annealing this material at approximately 33 K for approximately 1 hour results in a crystalline material as seen by sharper, more structured bands and negligible background extinction due to scattering. The constant k is reported for both the amorphous and the crystalline (annealed) states. Typical values (at absorption maxima) are in the .001 to .0001 range. Below lambda = 1.1 micrometers the bands are too weak to be detected by transmission through the films less than or equal to 215 micrometers in thickness, employed in the studies to date. Using previously measured values of the real part of the refractive index, n, of liquid methane at 110 K, n is computed for solid methane using the Lorentz-Lorenz relationship. Work is in progress to extend the measurements of optical constants n and k for liquid and solid to both shorter and longer wavelengths, eventually providing a complete optical constants database for condensed CH4

    Quantum Invariants, Modular Forms, and Lattice Points II

    Full text link
    We study the SU(2) Witten--Reshetikhin--Turaev invariant for the Seifert fibered homology spheres with M-exceptional fibers. We show that the WRT invariant can be written in terms of (differential of) the Eichler integrals of modular forms with weight 1/2 and 3/2. By use of nearly modular property of the Eichler integrals we shall obtain asymptotic expansions of the WRT invariant in the large-N limit. We further reveal that the number of the gauge equivalent classes of flat connections, which dominate the asymptotics of the WRT invariant in N ->\infinity, is related to the number of integral lattice points inside the M-dimensional tetrahedron

    Singular Support of a Vertex Algebra and the Arc Space of Its Associated Scheme

    Get PDF
    Book Subtitle: In Honour of the 75th Birthday of Tony JosephSeries Title: Progress in Mathematics (vol. 330)Attached to a vertex algebra V are two geometric objects. The associated scheme of V isthespectrum of Zhu's Poisson algebra Rv.Thesingular support of V is the spectrum of the associated graded algebra gr(V) with respect to Li's canonical decreasing filtration. There is a closed embedding from the singular support to the arc space of the associated scheme, which is an isomorphism in many interesting cases. In this note we give an example of a non-quasi-lisse vertex algebra whose associated scheme is reduced, for which the isomorphism is not true as schemes but true as varieties

    A generalization of the q-Saalschutz sum and the Burge transform

    Full text link
    A generalization of the q-(Pfaff)-Saalschutz summation formula is proved. This implies a generalization of the Burge transform, resulting in an additional dimension of the ``Burge tree''. Limiting cases of our summation formula imply the (higher-level) Bailey lemma, provide a new decomposition of the q-multinomial coefficients, and can be used to prove the Lepowsky and Primc formula for the A_1^{(1)} string functions.Comment: 18 pages, AMSLaTe

    Electron-hole correlation effects in the emission of light from quantum wires

    Full text link
    We present a self-consistent treatment of the electron-hole correlations in optically excited quantum wires within the ladder approximation, and using a contact potential interaction. The limitations of the ladder approximation to the excitonic low-density region are largely overcome by the introduction of higher order correlations through self consistency. We show relevance of these correlations in the low-temperature emission, even for high density relevant in lasing, when large gain replaces excitonic absorption.Comment: 4 paes 3 figure

    41Ca in tooth enamel. part I: A biological signature of neutron exposure in atomic bomb survivors

    Get PDF
    The detection of 41Ca atoms in tooth enamel using accelerator mass spectrometry is suggested as a method capable of reconstructing thermal neutron exposures from atomic bomb survivors in Hiroshima and Nagasaki. In general, 41Ca atoms are produced via thermal neutron capture by stable 40Ca. Thus any 41Ca atoms present in the tooth enamel of the survivors would be due to neutron exposure from both natural sources and radiation from the bomb. Tooth samples from five survivors in a control group with negligible neutron exposure were used to investigate the natural 41Ca content in tooth enamel, and 16 tooth samples from 13 survivors were used to estimate bomb-related neutron exposure. The results showed that the mean 41Ca/Ca isotope ratio was (0.17 ± 0.05) × 10-14 in the control samples and increased to 2 × 10-14 for survivors who were proximally exposed to the bomb. The 41Ca/Ca ratios showed an inverse correlation with distance from the hypocenter at the time of the bombing, similar to values that have been derived from theoretical free-in-air thermal-neutron transport calculations. Given that γ-ray doses were determined earlier for the same tooth samples by means of electron spin resonance (ESR, or electron paramagnetic resonance, EPR), these results can serve to validate neutron exposures that were calculated individually for the survivors but that had to incorporate a number of assumptions (e.g. shielding conditions for the survivors).Fil: Wallner, A.. Ludwig Maximilians Universitat; Alemania. Universitat Technical Zu Munich; Alemania. Universidad de Viena; AustriaFil: Ruhm, W.. Helmholtz Center Munich German Research Center For Environmental Health; Alemania. Ludwig Maximilians Universitat; AlemaniaFil: Rugel, G.. Ludwig Maximilians Universitat; Alemania. Universitat Technical Zu Munich; AlemaniaFil: Nakamura, N.. Radiation Effects Research Foundation; JapónFil: Arazi, Andres. Universitat Technical Zu Munich; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Faestermann, T.. Universitat Technical Zu Munich; AlemaniaFil: Knie, K.. Universitat Technical Zu Munich; Alemania. Ludwig Maximilians Universitat; AlemaniaFil: Maier, H. J.. Ludwig Maximilians Universitat; AlemaniaFil: Korschinek, G.. Universitat Technical Zu Munich; Alemani

    Gain in a quantum wire laser of high uniformity

    Full text link
    A multi-quantum wire laser operating in the 1-D ground state has been achieved in a very high uniformity structure that shows free exciton emission with unprecedented narrow width and low lasing threshold. Under optical pumping the spontaneous emission evolves from a sharp free exciton peak to a red-shifted broad band. The lasing photon energy occurs about 5 meV below the free exciton. The observed shift excludes free excitons in lasing and our results show that Coulomb interactions in the 1-D electron-hole system shift the spontaneous emission and play significant roles in laser gain.Comment: 4 pages, 4 figures, prepared by RevTe
    corecore