59 research outputs found

    The Updated IAU MDC Catalogue of Photographic Meteor Orbits

    Get PDF
    The database of photographic meteor orbits of the IAU Meteor Data Center at the Astronomical Institute SAS has gradually been updated. To the 2003 version of 4581 photographic orbits compiled from 17 different stations and obtained in the period 1936-1996, additional new 211 orbits compiled from 7 sources have been added. Thus, the updated version of the catalogue contains 4792 photographic orbits (equinox J2000.0) available either in two separate orbital and geophysical data files or a file with the merged data. All the updated files with relevant documentation are available at the web of the IAU Meteor Data Center. Keywords astronomical databases photographic meteor orbits 1 Introduction Meteoroid orbits are a basic tool for investigation of distribution and spatial structure of the meteoroid population in the close surroundings of the Earth s orbit. However, information about them is usually widely scattered in literature and often in publications with limited circulation. Therefore, the IAU Comm. 22 during the 1976 IAU General Assembly proposed to establish a meteor data center for collection of meteor orbits recorded by photographic and radio techniques. The decision was confirmed by the next IAU GA in 1982 and the data center was established (Lindblad, 1987). The purpose of the data center was to acquire, format, check and disseminate information on precise meteoroid orbits obtained by multi-station techniques and the database gradually extended as documented in previous reports on the activity of the Meteor Data Center by Lindblad (1987, 1995, 1999 and 2001) or Lindblad and Steel (1993). Up to present, the database consists of 4581 photographic meteor orbits (Lindblad et al., 2005), 63.330 radar determined orbit: Harvard Meteor Project (1961-1965, 1968-1969), Adelaide (1960-1961, 1968-1969), Kharkov (1975), Obninsk (1967-1968), Mogadish (1969-1970) and 1425 video-recordings (Lindblad, 1999) to which additional 817 video meteors orbits published by Koten el al. (2003) wer

    Shared and Distinct Aspects of the Sepsis Transcriptomic Response to Fecal Peritonitis and Pneumonia.

    Get PDF
    Non-commercial use onlyRATIONALE: Heterogeneity in the septic response has hindered efforts to understand pathophysiology and develop targeted therapies. Source of infection, with different causative organisms and temporal changes, might influence this heterogeneity. OBJECTIVES: To investigate individual and temporal variations in the transcriptomic response to sepsis due to fecal peritonitis, and to compare these with the same parameters in community-acquired pneumonia. METHODS: We performed genome-wide gene expression profiling in peripheral blood leukocytes of adult patients admitted to intensive care with sepsis due to fecal peritonitis (n = 117) or community-acquired pneumonia (n = 126), and of control subjects without sepsis (n = 10). MEASUREMENTS AND MAIN RESULTS: A substantial portion of the transcribed genome (18%) was differentially expressed compared with that of control subjects, independent of source of infection, with eukaryotic initiation factor 2 signaling being the most enriched canonical pathway. We identified two sepsis response signature (SRS) subgroups in fecal peritonitis associated with early mortality (P = 0.01; hazard ratio, 4.78). We defined gene sets predictive of SRS group, and serial sampling demonstrated that subgroup membership is dynamic during intensive care unit admission. We found that SRS is the major predictor of transcriptomic variation; a small number of genes (n = 263) were differentially regulated according to the source of infection, enriched for IFN signaling and antigen presentation. We define temporal changes in gene expression from disease onset involving phagosome formation as well as natural killer cell and IL-3 signaling. CONCLUSIONS: The majority of the sepsis transcriptomic response is independent of the source of infection and includes signatures reflecting immune response state and prognosis. A modest number of genes show evidence of specificity. Our findings highlight opportunities for patient stratification and precision medicine in sepsis.Supported by the National Institute for Health Research (NIHR) through the Comprehensive Clinical Research Network for patient recruitment, the Wellcome Trust (grants 074318 [J.C.K.] and 090532/Z/09/Z [core facilities Wellcome Trust Centre for Human Genetics including High-Throughput Genomics Group]), the European Research Council (ERC) under the European Union’s Seventh Framework Program (FP7/2007–2013)/ERC grant agreement 281824 (J.C.K.), the Medical Research Council (98082 [J.C.K.]), the UK Intensive Care Society, and the NIHR Oxford Biomedical Research Centre. A.V.S.H. is supported by a Wellcome Trust Senior Investigator Award (HCUZZ0), and A.C.G. is supported by an NIHR Clinician Scientist Fellowship

    New levels observed in\u3csup\u3e188\u3c/sup\u3eOs from the decay of\u3csup\u3e188\u3c/sup\u3eRe

    No full text
    The level structure of188Os has been investigated following the decay of 17h188Re. The energies and relative intensities of 41 gamma rays were determined using large volume high resolution Ge(Li) detectors. The decay was observed to populate the 0+ states at 1478 and 1704 keV which were recently observed in (p, t) reaction studies. Additional states at 1414 and 1843 keV were also observed in the decay. © 1975 Springer-Verlag

    Approaches to Determine Nuclear Shape in Cells During Migration Through Collagen Matrices.

    No full text
    Fibrillar collagen is an abundant extracellular matrix (ECM) component of interstitial tissues which supports the structure of many organs, including the skin and breast. Many different physiological processes, but also pathological processes such as metastatic cancer invasion, involve interstitial cell migration. Often, cell movement takes place through small ECM gaps and pores and depends upon the ability of the cell and its stiff nucleus to deform. Such nuclear deformation during cell migration may impact nuclear integrity, such as of chromatin or the nuclear envelope, and therefore the morphometric analysis of nuclear shapes can provide valuable insight into a broad variety of biological processes. Here, we describe a protocol on how to generate a cell-collagen model in vitro and how to use confocal microscopy for the static and dynamic visualization of labeled nuclei in single migratory cells. We developed, and here provide, two scripts that (Fidler, Nat Rev Cancer 3(6):453-458, 2003) enable the semi-automated and fast quantification of static single nuclear shape descriptors, such as aspect ratio or circularity, and the nuclear irregularity index that forms a combination of four distinct shape descriptors, as well as (Frantz et al., J Cell Sci 123 (Pt 24):4195-4200, 2010) a quantification of their changes over time. Finally, we provide quantitative measurements on nuclear shapes from cells that migrated through collagen either in the presence or the absence of an inhibitor of collagen degradation, showing the distinctive power of this approach. This pipeline can also be applied to cell migration studied in different assays, ranging from 3D microfluidics to migration in the living organism
    corecore