8,442 research outputs found
FILOU oscillation code
The present paper provides a description of the oscillation code FILOU, its
main features, type of applications it can be used for, and some representative
solutions. The code is actively involved in CoRoT/ESTA exercises (this volume)
for the preparation for the proper interpretation of space data from the CoRoT
mission. Although CoRoT/ESTA exercises have been limited to the oscillations
computations for non-rotating models, the main characteristic of FILOU is,
however, the computation of radial and non-radial oscillation frequencies in
presence of rotation. In particular, FILOU calculates (in a perturbative
approach) adiabatic oscillation frequencies corrected for the effects of
rotation (up to the second order in the rotation rate) including near
degeneracy effects. Furthermore, FILOU works with either a uniform rotation or
a radial differential rotation profile (shellular rotation), feature which
makes the code singular in the field.Comment: 6 pages, 5 figures. Astrophysics and Space Science (in press
Radiation effects on the electronic structure of bilayer graphene
We report on the effects of laser illumination on the electronic properties
of bilayer graphene. By using Floquet theory combined with Green's functions we
unveil the appeareance of laser-induced gaps not only at integer multiples of
but also at the Dirac point with features which are shown to
depend strongly on the laser polarization. Trigonal warping corrections are
shown to lead to important corrections for radiation in the THz range, reducing
the size of the dynamical gaps. Furthermore, our analysis of the topological
properties at low energies reveals that when irradiated with linearly polarized
light, ideal bilayer graphene behaves as a trivial insulator, whereas circular
polarization leads to a non-trivial insulator per valley.Comment: 5 pages 3 figure
Computational modelling of the behaviour of biomarker particles of colorectal cancer in fecal matter
Colorectal adenocarcinoma is one of the carcinogenic diseases that is increasing the morbidity and mortality rates worldwide. The disease initially occurs through the segregation of biomarker substances in the human system without manifesting symptoms that affect the health of the carrier. Early detection would allow the application of more effective treatments, less invasive procedures and reduce the development of cancer. The purpose of this investigation was the elaboration of a mathematical model and the development of computational simulations to visualize the behavior of biomarker particles in transit through the colon. The flow conditions, properties of the viscous medium and biological regions of interest were established. Constitutive models, numerical conditions and solution strategies were determined. A numerical grid was used to represent the model of the colon and the human feces that carry the bioparticles (biomarkers). The results indicated the trajectories of the bioparticles in the fecal mass and the interactive movement with the natural contractions of the colon. The analysis of the movement of the biomarker particles can provide future less invasive alternatives for the detection in real time of the cancer by means of the implantation of biosensors in the walls of the colon
Crafting zero-bias one-way transport of charge and spin
We explore the electronic structure and transport properties of a metal on
top of a (weakly coupled) two-dimensional topological insulator. Unlike the
widely studied junctions between topological non-trivial materials, the systems
studied here allow for a unique bandstructure and transport steering. First,
states on the topological insulator layer may coexist with the gapless bulk
and, second, the edge states on one edge can be selectively switched-off,
thereby leading to nearly perfect directional transport of charge and spin even
in the zero bias limit. We illustrate these phenomena for Bernal stacked
bilayer graphene with Haldane or intrinsic spin-orbit terms and a perpendicular
bias voltage. This opens a path for realizing directed transport in materials
such as van der Waals heterostructures, monolayer and ultrathin topological
insulators.Comment: 7 pages, 7 figure
- …