104 research outputs found

    Surface bubble nucleation phase space

    Get PDF
    Recent research has revealed several different techniques for nanoscopic gas nucleation on submerged surfaces, with findings seemingly in contradiction with each other. In response to this, we have systematically investigated the occurrence of surface nanobubbles on a hydrophobised silicon substrate for various different liquid temperatures and gas concentrations, which we controlled independently. We found that nanobubbles occupy a distinct region of this phase space, occurring for gas concentrations of approximately 100-110%. Below the nanobubble phase we did not detect any gaseous formations on the substrate, whereas micropancakes (micron wide, nanometer high gaseous domains) were found at higher temperatures and gas concentrations. We moreover find that supersaturation of dissolved gases is not a requirement for nucleation of bubbles.Comment: 4 pages, 4 figure

    To see or not to see: Imaging surfactant coated nano--particles using HIM and SEM

    Get PDF
    Nano--particles are of great interest in fundamental and applied research. However, their accurate visualization is often difficult and the interpretation of the obtained images can be complicated. We present a comparative scanning electron microscopy and helium ion microscopy study of cetyltrimethylammonium--bromide (CTAB) coated gold nano--rods. Using both methods we show how the gold core as well as the surrounding thin CTAB shell can selectively be visualized. This allows for a quantitative determination of the dimensions of the gold core or the CTAB shell. The obtained CTAB shell thickness of 1.0 nm--1.5 nm is in excellent agreement with earlier results using more demanding and reciprocal space techniques.Comment: revised versio

    Wetting of two-component drops: Marangoni contraction versus autophobing

    Get PDF
    The wetting properties of multi-component liquids are crucial to numerous industrial applications. The mechanisms that determine the contact angles for such liquids remain poorly understood, with many intricacies arising due to complex physical phenomena, for example due to the presence of surfactants. Here, we consider two-component drops that consist of mixtures of vicinal alkane diols and water. These diols behave surfactant-like in water. However, the contact angles of such mixtures on solid substrates are surprisingly large. We experimentally reveal that the contact angle is determined by two separate mechanisms of completely different nature, namely Marangoni contraction (hydrodynamic) and autophobing (molecular). It turns out that the length of the alkyl tail of the alkane diol determines which mechanism is dominant, highlighting the intricate coupling between molecular physics and the macroscopic wetting of complex fluids

    Electrolytically Generated Nanobubbles on HOPG Surfaces

    Get PDF
    Electrolysis of water is employed to produce surface nanobubbles on highly orientated pyrolytic graphite (HOPG) surfaces. Hydrogen (oxygen) nanobubbles are formed when the HOPG surface acts as negative (positive) electrode. Coverage and volume of the nanobubbles enhance with increasing voltage. The yield of hydrogen nanobubbles is much larger than the yield of oxygen nanobubbles. The growth of the individual nanobubbles during the electrolysis process is recorded in time with the help of AFM measurements and correlated with the total current. Both the size of the individual nanobubbles and the total current saturate after typical 1 minute; then the nanobubbles are in a dynamic equilibrium, meaning that they do not further grow, in spite of ongoing gas production and nonzero current. The surface area of nanobubbles shows a good correlation with the nanobubble volume growth rate, suggesting that either the electrolytic gas emerges directly at the nanobubbles' surface, or it emerges at the electrode's surface and then diffuses through the nanobubbles' surface. Moreover, the experiments reveal that the time constants of the current and the aspect ratio of nanobubbles are the same under all conditions. Replacement of pure water by water containing a small amount of sodium chloride (0.01 M) allows for larger currents, but qualitatively gives the same results.Comment: Langmuir, in pres

    Characterization of ftsZ Mutations that Render Bacillus subtilis Resistant to MinC

    Get PDF
    Background: Cell division in Bacillus subtilis occurs precisely at midcell. Positional control of cell division is exerted by two mechanisms: nucleoid occlusion, through Noc, which prevents division through nucleoids, and the Min system, where the combined action of the MinC, D and J proteins prevents formation of the FtsZ ring at cell poles or recently completed division sites. Methodology/Principal Findings: We used a genetic screen to identify mutations in ftsZ that confer resistance to the lethal overexpression of the MinC/MinD division inhibitor. The FtsZ mutants were purified and found to polymerize to a similar or lesser extent as wild type FtsZ, and all mutants displayed reduced GTP hydrolysis activity indicative of a reduced polymerization turnover. We found that even though the mutations conferred in vivo resistance to MinC/D, the purified FtsZ mutants did not display strong resistance to MinC in vitro. Conclusions/Significance: Our results show that in B. subtilis, overproduction of MinC can be countered by mutations that alter FtsZ polymerization dynamics. Even though it would be very likely that the FtsZ mutants found depend on other Z-ring stabilizing proteins such as ZapA, FtsA or SepF, we found this not to be the case. This indicates that the cell division process in B. subtilis is extremely robust.
    • …
    corecore