456 research outputs found

    On the properties of steady states in turbulent axisymmetric flows

    Full text link
    We experimentally study the properties of mean and most probable velocity fields in a turbulent von K\'arm\'an flow. These fields are found to be described by two families of functions, as predicted by a recent statistical mechanics study of 3D axisymmetric flows. We show that these functions depend on the viscosity and on the forcing. Furthermore, when the Reynolds number is increased, we exhibit a tendency for Beltramization of the flow, i.e. a velocity-vorticity alignment. This result provides a first experimental evidence of nonlinearity depletion in non-homogeneous non-isotropic turbulent flow.Comment: latex prl-stationary-051215arxiv.tex, 9 files, 6 figures, 4 pages (http://www-drecam.cea.fr/spec/articles/S06/008/

    An inertial range length scale in structure functions

    Full text link
    It is shown using experimental and numerical data that within the traditional inertial subrange defined by where the third order structure function is linear that the higher order structure function scaling exponents for longitudinal and transverse structure functions converge only over larger scales, r>rSr>r_S, where rSr_S has scaling intermediate between η\eta and λ\lambda as a function of RλR_\lambda. Below these scales, scaling exponents cannot be determined for any of the structure functions without resorting to procedures such as extended self-similarity (ESS). With ESS, different longitudinal and transverse higher order exponents are obtained that are consistent with earlier results. The relationship of these statistics to derivative and pressure statistics, to turbulent structures and to length scales is discussed.Comment: 25 pages, 9 figure

    Probabilistic Clustering of Sequences: Inferring new bacterial regulons by comparative genomics

    Full text link
    Genome wide comparisons between enteric bacteria yield large sets of conserved putative regulatory sites on a gene by gene basis that need to be clustered into regulons. Using the assumption that regulatory sites can be represented as samples from weight matrices we derive a unique probability distribution for assignments of sites into clusters. Our algorithm, 'PROCSE' (probabilistic clustering of sequences), uses Monte-Carlo sampling of this distribution to partition and align thousands of short DNA sequences into clusters. The algorithm internally determines the number of clusters from the data, and assigns significance to the resulting clusters. We place theoretical limits on the ability of any algorithm to correctly cluster sequences drawn from weight matrices (WMs) when these WMs are unknown. Our analysis suggests that the set of all putative sites for a single genome (e.g. E. coli) is largely inadequate for clustering. When sites from different genomes are combined and all the homologous sites from the various species are used as a block, clustering becomes feasible. We predict 50-100 new regulons as well as many new members of existing regulons, potentially doubling the number of known regulatory sites in E. coli.Comment: 27 pages including 9 figures and 3 table

    Frequency Dependent Viscosity Near the Critical Point: The Scale to Two Loop Order

    Full text link
    The recent accurate measurements of Berg, Moldover and Zimmerli of the viscoelastic effect near the critical point of xenon has shown that the scale factor involved in the frequency scaling is about twice the scale factor obtained theoretically. We show that this discrepancy is a consequence of using first order perturbation theory. Including two loop contribution goes a long way towards removing the discrepancy.Comment: No of pages:7,Submitted to PR-E(Rapid Communication),No of EPS files:

    Breakdown of scale-invariance in the coarsening of phase-separating binary fluids

    Full text link
    We present evidence, based on lattice Boltzmann simulations, to show that the coarsening of the domains in phase separating binary fluids is not a scale-invariant process. Moreover we emphasise that the pathway by which phase separation occurs depends strongly on the relation between diffusive and hydrodynamic time scales.Comment: 4 pages, Latex, 4 eps Figures included. (higher quality Figures can be obtained from [email protected]

    Magnetic Properties of a Bose-Einstein Condensate

    Full text link
    Three hyperfine states of Bose-condensed sodium atoms, recently optically trapped, can be described as a spin-1 Bose gas. We study the behaviour of this system in a magnetic field, and construct the phase diagram, where the temperature of the Bose condensation TBECT_{BEC} increases with magnetic field. In particular the system is ferromagnetic below TBECT_{BEC} and the magnetization is proportional to the condensate fraction in a vanishing magnetic field. Second derivatives of the magnetisation with regard to temperature or magnetic field are discontinuous along the phase boundary.Comment: 5 pages, 5 figures included, to appear in Phys. Rev.

    Penta-Hepta Defect Motion in Hexagonal Patterns

    Full text link
    Structure and dynamics of penta-hepta defects in hexagonal patterns is studied in the framework of coupled amplitude equations for underlying plane waves. Analytical solution for phase field of moving PHD is found in the far field, which generalizes the static solution due to Pismen and Nepomnyashchy (1993). The mobility tensor of PHD is calculated using combined analytical and numerical approach. The results for the velocity of PHD climbing in slightly non-optimal hexagonal patterns are compared with numerical simulations of amplitude equations. Interaction of penta-hepta defects in optimal hexagonal patterns is also considered.Comment: 4 pages, Postscript (submitted to PRL

    Bose-Einstein condensation with internal degrees of freedom in alkali atom gases

    Full text link
    The Bogoliubov theory is extended to a Bose-Einstein condensation with internal degrees of freedom, realized recently in 23^{23}Na gases where several hyperfine states are simultaneously cooled optically. Starting with a Hamiltonian constructed from general gauge and spin rotation symmetry principles fundamental equations for condensate are derived. The ground state where time reversal symmetry is broken in some case and low-lying collective modes, e.g. spin and density wave modes, are discussed. Novel vortex as a topological defect can be created experimentally.Comment: 4 pages, 1 eps figur

    Domain Coarsening in Systems Far from Equilibrium

    Get PDF
    The growth of domains of stripes evolving from random initial conditions is studied in numerical simulations of models of systems far from equilibrium such as Rayleigh-Benard convection. The scaling of the size of the domains deduced from the inverse width of the Fourier spectrum is studied for both potential and nonpotential models. The morphology of the domains and the defect structures are however quite different in the two cases, and evidence is presented for a second length scale in the nonpotential case.Comment: 11 pages, RevTeX; 3 uufiles encoded postscript figures appende

    Rain, power laws, and advection

    Full text link
    Localized rain events have been found to follow power-law size and duration distributions over several decades, suggesting parallels between precipitation and seismic activity [O. Peters et al., PRL 88, 018701 (2002)]. Similar power laws are generated by treating rain as a passive tracer undergoing advection in a velocity field generated by a two-dimensional system of point vortices.Comment: 7 pages, 4 figure
    corecore