43 research outputs found

    Digestion with HNO3-HClO4-H2SO4 and determination of Al, Cd, Cu, Fe, Mn, Pb, Zn

    No full text

    Towards an Understanding of the Function of the Phytochelatin Synthase of Schistosoma mansoni

    Get PDF
    International audiencePhytochelatin synthase (PCS) is a protease-like enzyme that catalyzes the production of metal chelating peptides, the phytochelatins, from glutathione (GSH). In plants, algae, and fungi phytochelatin production is important for metal tolerance and detoxification. PCS proteins also function in xenobiotic metabolism by processing GSH S-conjugates. The aim of the present study is to elucidate the role of PCS in the parasitic worm Schistosoma mansoni. Recombinant S. mansoni PCS proteins expressed in bacteria could both synthesize phytochelatins and hydrolyze various GSH S-conjugates. We found that both the N-truncated protein and the N- and C-terminal truncated form of the enzyme (corresponding to only the catalytic domain) work through a thiol-dependant and, notably, metal-independent mechanism for both transpeptidase (phytochelatin synthesis) and peptidase (hydrolysis of GSH S-conjugates) activities. PCS transcript abundance was increased by metals and xenobiotics in cultured adult worms. In addition, these treatments were found to increase transcript abundance of other enzymes involved in GSH metabolism. Highest levels of PCS transcripts were identified in the esophageal gland of adult worms. Taken together, these results suggest that S. mansoni PCS participates in both metal homoeostasis and xenobiotic metabolism rather than metal detoxification as previously suggested and that the enzyme may be part of a global stress response in the worm. Because humans do not have PCS, this enzyme is of particular interest as a drug target for schistosomiasis. © 2013 Rigouin et al

    Development of a new passive sampler based on diffusive milligel beads for copper analysis in water

    No full text
    International audienceA new passive sampler was designed and characterized for the determination of free copper ion (Cu2+) concentration in aqueous solution. Each sampling device was composed of a set of about 30 diffusive milligel (DMG) beads. Milligel beads with incorporated cation exchange resin (Chelex) particles were synthetized using an adapted droplet-based millifluidic process. Beads were assumed to be prolate spheroids, with a diameter of 1.6 mm and an anisotropic factor of 1.4. The milligel was controlled in chemical composition of hydrogel (monomer, cross-linker, initiator and Chelex concentration) and characterized in pore size. Two types of sampling devices were developed containing 7.5% and 15% of Chelex, respectively, and 6 nm pore size. The kinetic curves obtained demonstrated the accumulation of copper in the DMG according to the process described in the literature as absorption (and/or adsorption) and release following the Fick's first law of diffusion. For their use in water monitoring, the typical physico-chemical characteristics of the samplers, i.e. the mass-transfer coefficient (k\textlessinf\textgreater0\textless/inf\textgreater) and the sampler-water partition coefficient (K\textlessinf\textgreatersw\textless/inf\textgreater), were determined based on a static exposure design. In order to determine the copper concentration in the samplers after their exposure, a method using DMG bead digestion combined to Inductively Coupled Plasma - Atomic Emission Spectrometry (ICP-AES) analysis was developed and optimized. The DMG devices proved to be capable to absorb free copper ions from an aqueous solution, which could be accurately quantified with a mean recovery of 99% and a repeatability of 7% (mean relative uncertainty)

    Chemical bioimaging for the subcellular localization of trace elements by high contrast TEM, TEM/X-EDS, and NanoSIMS

    No full text
    International audienceChemical bioimaging offers an important contribution to the investigation of biochemical functions, biosorption and bioaccumulation processes of trace elements via their localization at the cellular and even at the subcellular level. This paper describes the combined use of high contrast transmission electron microscopy (HC-TEM), energy dispersive X-ray spectroscopy (X-EDS), and nano secondary ion mass spectrometry (NanoSIMS) applied to a model organism, the unicellular green algae Chlamydomonas reinhardtii. HC-TEM providing a lateral resolution of 1 nm was used for imaging the ultrastructure of algae cells which have diameters of 5–10 μm. TEM coupled to X-EDS (TEM/X-EDS) combined textural (morphology and size) analysis with detection of Ca, P, K, Mg, Fe, and Zn in selected subcellular granules using an X-EDS probe size of approx. 1 μm. However, instrumental sensitivity was at the limit for trace element detection. NanoSIMS allowed chemical imaging of macro and trace elements with subcellular resolution (element mapping). Ca, Mg, and P as well as the trace elements Fe, Cu, and Zn present at basal levels were detected in pyrenoids, contractile vacuoles, and granules. Some metals were even localized in small vesicles of about 200 nm size. Sensitive subcellular localization of trace metals was possible by the application of a recently developed RF plasma oxygen primary ion source on NanoSIMS which has shown good improvements in terms of lateral resolution (below 50 nm), sensitivity, and stability. Furthermore correlative single cell imaging was developed combining the advantages of TEM and NanoSIMS. An advanced sample preparation protocol provided adjacent ultramicrotome sections for parallel TEM and NanoSIMS analyses of the same cell. Thus, the C. reinhardtii cellular ultrastructure could be directly related to the spatial distribution of metals in different cell organelles such as vacuoles and chloroplast. © 2016 Elsevier Gmb

    Pools of cadmium in Chlamydomonas reinhardtii revealed by chemical imaging and XAS spectroscopy

    No full text
    The green micro-alga Chlamydomonas reinhardtii is commonly used as a model to investigate metallic stress in photosynthetic organisms. The aim of this study was to explore processes implemented by three C. reinhardtii strains to cope with cadmium (Cd), and particularly to evidence Cd sequestration in the cell. For that, we used a combination of subcellular fractionation and chemical imaging (micro X-ray fluorescence (μXRF) and transmission electron microscopy (TEM/X-EDS)) to identify subcellular compartments of Cd accumulation, and X-ray absorption spectroscopy (XAS) to determine chemical Cd speciation. C. reinhardtii wild type strain 11/32b (wt), a newly design strain (pcs1) expressing a modified phytochelatin synthase in the chloroplast and a cell wall less strain CC400 (cw15) were exposed to 70 μM Cd. At this Cd concentration, cell vitality was not affected, however, the strains showed various strategies to cope with Cd stress. In wt, most of Cd was diffused in the whole cell, and complexed by thiol ligands, while the other part was associated with phosphate in vacuolar Ca polyphosphate granules. Thiol ligands increased with exposure time, confirming their important role in Cd stress. In pcs1, Cd was also present as vacuolar Ca polyphosphate granules, and diffused in the cell as Cd-thiol complexes. In addition, while it should be regarded with caution, a minor proportion of Cd complexed by carboxyl groups, was potentially provided by starch produced around the pyrenoid and in the chloroplast. Results suggested that pcs1 uses thiol compounds such as PC to a lesser extent for Cd sequestration than wt. In cw15, an excretion of Cd, Ca polyphosphate granules has to be considered. Finally, Cd was detected in the pyrenoid of all strains

    A New Radio Frequency Plasma Oxygen Primary Ion Source on Nano Secondary Ion Mass Spectrometry for Improved Lateral Resolution and Detection of Electropositive Elements at Single Cell Level

    No full text
    An important application field of secondary ion mass spectrometry at the nanometer scale (NanoSIMS) is the detection of chemical elements and, in particular, metals at the subcellular level in biological samples. The detection of many trace metals requires an oxygen primary ion source to allow the generation of positive secondary ions with high yield in the NanoSIMS. The duoplasmatron oxygen source is commonly used in this ion microprobe but cannot achieve the same quality of images as the cesium primary ion source used to produce negative secondary ions (C-, CN-, S-, P-) due to a larger primary ion beam size. In this paper, a new type of an oxygen ion source using a rf plasma is fitted and characterized on a NanoSIMS50L. The performances of this primary ion source in terms of current density and achievable lateral resolution have been characterized and compared to the conventional duoplasmatron and cesium sources. The new rf plasma oxygen source offered a net improvement in terms of primary beam current density compared to the commonly used duoplasmatron source, which resulted in higher ultimate lateral resolutions down to 37 nm and which provided a 5-45 times higher apparent sensitivity for electropositive elements. Other advantages include a better long-term stability and reduced maintenance. This new rf plasma oxygen primary ion source has been applied to the localization of essential macroelements and trace metals at basal levels in two biological models, cells of Chlamydomonas reinhardtii and Arabidopsis thaliana. © 2016 American Chemical Society
    corecore