803 research outputs found

    Circularly Polarized Resonant Rayleigh Scattering and Skyrmions in the ν\nu = 1 Quantum Hall Ferromagnet

    Full text link
    We use the circularly polarized resonant Rayleigh scattering (RRS) to study the quantum Hall ferromagnet at ν\nu = 1. At this filling factor we observe a right handed copolarized RRS which probes the Skyrmion spin texture of the electrons in the photoexcited grounds state. The resonant scattering is not present in the left handed copolarization, and this can be related to the correlation between Skymionic effects, screening and spin wave excitations. These results evidence that RRS is a valid method for the study of the spin texture of the quantum Hall states

    Statics and Dynamics of the Wormlike Bundle Model

    Get PDF
    Bundles of filamentous polymers are primary structural components of a broad range of cytoskeletal structures, and their mechanical properties play key roles in cellular functions ranging from locomotion to mechanotransduction and fertilization. We give a detailed derivation of a wormlike bundle model as a generic description for the statics and dynamics of polymer bundles consisting of semiflexible polymers interconnected by crosslinking agents. The elastic degrees of freedom include bending as well as twist deformations of the filaments and shear deformation of the crosslinks. We show that a competition between the elastic properties of the filaments and those of the crosslinks leads to renormalized effective bend and twist rigidities that become mode-number dependent. The strength and character of this dependence is found to vary with bundle architecture, such as the arrangement of filaments in the cross section and pretwist. We discuss two paradigmatic cases of bundle architecture, a uniform arrangement of filaments as found in F-actin bundles and a shell-like architecture as characteristic for microtubules. Each architecture is found to have its own universal ratio of maximal to minimal bending rigidity, independent of the specific type of crosslink induced filament coupling; our predictions are in reasonable agreement with available experimental data for microtubules. Moreover, we analyze the predictions of the wormlike bundle model for experimental observables such as the tangent-tangent correlation function and dynamic response and correlation functions. Finally, we analyze the effect of pretwist (helicity) on the mechanical properties of bundles. We predict that microtubules with different number of protofilaments should have distinct variations in their effective bending rigidity

    Orbital current mode in elliptical quantum dots

    Full text link
    An orbital current mode peculiar to deformed quantum dots is theoretically investigated; first by using a simple model that allows to interpret analytically its main characteristics, and second, by numerically solving the microscopic equations of time evolution after an initial perturbation within the time-dependent local-spin-density approximation. Results for different deformations and sizes are shown.Comment: 4 REVTEX pages, 4 PDF figures, accepted in PRB:R

    Wurtzite quantum wires with strong spatial confinement: polarization anisotropies in single wire spectroscopy

    Full text link
    We report GaAs/AlGaAs nanowires in the one-dimensional (1D) quantum limit. The ultrathin wurtzite GaAs cores between 20-40\,nm induce large confinement energies of several tens of meV, allowing us to experimentally resolve up to four well separated subband excitations in microphotoluminescence spectroscopy. Our detailed experimental and theoretical polarization-resolved study reveals a strong diameter-dependent anisotropy of these transitions: We demonstrate that the polarization of the detected photoluminescence is governed by the symmetry of the wurtzite 1D quantum wire subbands on the one hand, but also by the dielectric mismatch of the wires with the surrounding material on the other hand. The latter effect leads to a strong attenuation of perpendicularly polarized light in thin dielectric wires, making the thickness of the AlGaAs shell an important factor in the observed polarization behavior. Including the dielectric mismatch to our k.p-based simulated polarization-resolved spectra of purely wurtzite GaAs quantum wires, we find an excellent agreement between experiment and theory

    Theory of Resonant Raman Scattering in One Dimensional Electronic systems

    Full text link
    A theory of resonant Raman scattering spectroscopy of one dimensional electronic systems is developed on the assumptions that (i) the excitations of the one dimensional electronic system are described by the Luttinger Liquid model, (ii) Raman processes involve virtual excitations from a filled valence band to an empty state of the one dimensional electronic system and (iii) excitonic interactions between the valence and conduction bands may be neglected. Closed form analytic expressions are obtained for the Raman scattering cross sections, and are evaluated analytically and numerically for scattering in the polarized channel, revealing a "double-peak" structure with the lower peak involving multispinon excitations with total spin S=0 and the higher peak being the conventional plasmon. A key feature of our results is a nontrivial power law dependence, involving the Luttinger Liquid exponents, of the dependence of the Raman cross sections on the difference of the laser frequency from resonance. We find that near resonance the calculated ratio of intensity in the lower energy feature to the intensity in the higher energy feature saturates at a value of the order of unity (times a factor of the ratio of the velocities of the two modes). We explicate the differences between the 'Luttinger liquid' and 'Fermi liquid' calculations of RRS spectra and argue that excitonic effects, neglected in all treatments so far, are essential for explaining the intensity ratios observed in quantum wires. We also discuss other Luttinger liquid features which may be observed in future RRS experiments

    Oscillation modes of two-dimensional nanostructures within the time-dependent local-spin-density approximation

    Full text link
    We apply the time-dependent local-spin-density approximation as general theory to describe ground states and spin-density oscillations in the linear response regime of two-dimensional nanostructures of arbitrary shape. For this purpose, a frequency analysis of the simulated real-time evolution is performed. The effect on the response of the recently proposed spin-density waves in the ground state of certain parabolic quantum dots is considered. They lead to the prediction of a new class of excitations, soft spin-twist modes, with energies well below that of the spin dipole oscillation.Comment: 4 RevTex pages and 4 GIF figures, accepted in PR

    Cyclotron effect on coherent spin precession of two-dimensional electrons

    Full text link
    We investigate the spin dynamics of high-mobility two-dimensional electrons in GaAs/AlGaAs quantum wells grown along the [001][001] and [110][110] directions by time-resolved Faraday rotation at low temperatures. In measurements on the (001)(001)-grown structures without external magnetic fields, we observe coherent oscillations of the electron spin polarization about the effective spin-orbit field. In non-quantizing magnetic fields applied normal to the sample plane, the cyclotron motion of the electrons rotates the effective spin-orbit field. This rotation leads to fast oscillations in the spin polarization about a non-zero value and a strong increase in the spin dephasing time in our experiments. These two effects are absent in the (110)(110)-grown structure due to the different symmetry of its effective spin-orbit field. The measurements are in excellent agreement with our theoretical model.Comment: 4 pages, 3 figure
    • …
    corecore