2,741 research outputs found

    Entanglement Witnesses from Single-Particle Interference

    Full text link
    We describe a general method of realizing entanglement witnesses in terms of the interference pattern of a single quantum probe. After outlining the principle, we discuss specific realizations both with electrons in mesoscopic Aharonov-Bohm rings and with photons in standard Young's double-slit or coherent-backscattering interferometers.Comment: 5 pages, 3 figures, epl2, uses pstricks.st

    Interaction Effects Among Two-Dimensional Electrons and Holes

    Get PDF
    We report large logarithmic corrections to the conductivity of two-dimensional electrons and holes in GaSb-InAs-GaSb double heterostructures. From ∼ 40 mK to 1 K, the conductivity increased with the logarithm of the temperature but with a slope as much as 30 times larger than estimated from the theories of weak localization and carrier interaction. The discrepancy apparently results from electron-hole interactions not included in the theory

    Interaction effects among two-dimensional electrons and holes

    Get PDF
    We report large logarithmic corrections to the conductivity of two-dimensional electrons and holes in GaSb-InAs-GaSb double heterostructures. From ∼ 40 mK to 1 K, the conductivity increased with the logarithm of the temperature but with a slope as much as 30 times larger than estimated from the theories of weak localization and carrier interaction. The discrepancy apparently results from electron-hole interactions not included in the theory

    Interaction Effects Among Two-Dimensional Electrons and Holes

    Get PDF
    We report large logarithmic corrections to the conductivity of two-dimensional electrons and holes in GaSb-InAs-GaSb double heterostructures. From ∼ 40 mK to 1 K, the conductivity increased with the logarithm of the temperature but with a slope as much as 30 times larger than estimated from the theories of weak localization and carrier interaction. The discrepancy apparently results from electron-hole interactions not included in the theory

    Support for Integrated Ecosystem Assessments of NOAA’s National Estuarine Research Reserves System (NERRS), Volume I: The Impacts of Coastal Development on the Ecology and Human Well-being of Tidal Creek Ecosystems of the US Southeast

    Get PDF
    A study was conducted, in association with the Sapelo Island and North Carolina National Estuarine Research Reserves (NERRs), to evaluate the impacts of coastal development on sentinel habitats (e.g., tidal creek ecosystems), including potential impacts to human health and well-being. Uplands associated with southeastern tidal creeks and the salt marshes they drain are popular locations for building homes, resorts, and recreational facilities because of the high quality of life and mild climate associated with these environments. Tidal creeks form part of the estuarine ecosystem characterized by high biological productivity, great ecological value, complex environmental gradients, and numerous interconnected processes. This research combined a watershed-level study integrating ecological, public health and human dimension attributes with watershed-level land use data. The approach used for this research was based upon a comparative watershed and ecosystem approach that sampled tidal creek networks draining developed watersheds (e.g., suburban, urban, and industrial) as well as undeveloped sites. The primary objective of this work was to clearly define the relationships between coastal development with its concomitant land use changes and non-point source pollution loading and the ecological and human health and well-being status of tidal creek ecosystems. Nineteen tidal creek systems, located along the southeastern United States coast from southern North Carolina to southern Georgia, were sampled during summer (June-August), 2005 and 2006. Within each system, creeks were divided into two primary segments based upon tidal zoning: intertidal (i.e., shallow, narrow headwater sections) and subtidal (i.e., deeper and wider sections), and watersheds were delineated for each segment. In total, we report findings on 24 intertidal and 19 subtidal creeks. Indicators sampled throughout each creek included water quality (e.g., dissolved oxygen concentration, salinity, nutrients, chlorophyll-a levels), sediment quality (e.g., characteristics, contaminants levels including emerging contaminants), pathogen and viral indicators, and abundance and genetic responses of biological resources (e.g., macrobenthic and nektonic communities, shellfish tissue contaminants, oyster microarray responses). For many indicators, the intertidally-dominated or headwater portions of tidal creeks were found to respond differently than the subtidally-dominated or larger and deeper portions of tidal creeks. Study results indicate that the integrity and productivity of headwater tidal creeks were impaired by land use changes and associated non-point source pollution, suggesting these habitats are valuable early warning sentinels of ensuing ecological impacts and potential public health threats. For these headwater creeks, this research has assisted the validation of a previously developed conceptual model for the southeastern US region. This conceptual model identified adverse changes that generally occurred in the physical and chemical environment (e.g., water quality indicators such as indicator bacteria for sewage pollution or sediment chemical contamination) when impervious cover levels in the watershed reach 10-20%. Ecological characteristics responded and were generally impaired when impervious cover levels exceed 20-30%. Estimates of impervious cover levels defining where human uses are impaired are currently being determined, but it appears that shellfish bed closures and the flooding vulnerability of headwater regions become a concern when impervious cover values exceed 10-30%. This information can be used to forecast the impacts of changing land use patterns on tidal creek environmental quality as well as associated human health and well-being. In addition, this study applied tools and technologies that are adaptable, transferable, and repeatable among the high quality NERRS sites as comparable reference entities to other nearby developed coastal watersheds. The findings herein will be of value in addressing local, regional and national needs for understanding multiple stressor (anthropogenic and human impacts) effects upon estuarine ecosystems and response trends in ecosystem condition with changing coastal impacts (i.e., development, climate change). (PDF contaions 88 pages

    Two-Bit Gates are Universal for Quantum Computation

    Full text link
    A proof is given, which relies on the commutator algebra of the unitary Lie groups, that quantum gates operating on just two bits at a time are sufficient to construct a general quantum circuit. The best previous result had shown the universality of three-bit gates, by analogy to the universality of the Toffoli three-bit gate of classical reversible computing. Two-bit quantum gates may be implemented by magnetic resonance operations applied to a pair of electronic or nuclear spins. A ``gearbox quantum computer'' proposed here, based on the principles of atomic force microscopy, would permit the operation of such two-bit gates in a physical system with very long phase breaking (i.e., quantum phase coherence) times. Simpler versions of the gearbox computer could be used to do experiments on Einstein-Podolsky-Rosen states and related entangled quantum states.Comment: 21 pages, REVTeX 3.0, two .ps figures available from author upon reques

    Spatial and Time Distribution of Dairy Cattle Manure in an Intensive Pasture System

    Get PDF
    This study determined distribution of feces and urine from dairy cattle managed in a rotationally grazed pasture. Lactating Holsteins (n=18) and Jerseys (n=18) were grazed on a .74 ha endophyte-free fescue (Festuca arundinacea)/white clover (Trifolium repens) pasture. All cows were constantly observed for 24 h 6 times over 12 mo. Cows had access to about 54% of the paddock during the first grazing period (12 h) and had access to the entire paddock during the second grazing period (8 h). Data included: (1) all feces and urine events from eight cows, observed while in the pasture, feed area, milking parlor or in transit; and (2) all urine and feces events on pasture for all 36 cows each grazing period. After each grazing period, urine (marked with color coded flags) and feces were surveyed and mapped. Data were transformed and then analyzed using statistical software. Percentages of the manure events were highly correlated with time spent in each area (r= .99). Feces and urine (estimated at .12 m2 and .36 m2, respectively) from the six 24-hr observations covered 10% of the total paddock. Within a 30-m radius of the water tank, spatial density of feces and urine from the warm season observations (July, August, September) were significantly greater than concentrations during the cool season observations (December, February, and April). Pasture systems can potentially reduce manure handling and storage requirements proportional to the time cows are kept on pasture. Manure on pasture was relatively evenly distributed over multiple grazing periods

    Electron focusing, mode spectroscopy and mass enhancement in small GaAs/AlGaAs rings

    Full text link
    A new electron focusing effect has been discovered in small single and coupled GaAs/AlGaAs rings. The focusing in the single ring is attributed solely to internal orbits. The focusing effect allows the ring to be used as a small mass spectrometer. The focusing causes peaks in the magnetoresistance at low fields, and the peak positions were used to study the dispersion relation of the one-dimensional magnetoelectric subbands. The electron effective mass increases with the applied magnetic field by a factor of 5050, at a magnetic field of 0.5T0.5T. This is the first time this increase has been measured directly. General agreement obtains between the experiment and the subband calculations for straight channels.Comment: 13 pages figures are available by reques

    Studies of h/e Aharonov-Bohm Photovoltaic Oscillations in Mesoscopic Au Rings

    Full text link
    We have investigated a mesoscopic photovoltaic (PV) effect in micron-size Au rings in which a dc voltage Vdc is generated in response to microwave radiation. The effect is due to the lack of inversion symmetry in a disordered system. Aharonov-Bohm PV oscillations with flux period h/e have been observed at low microwave intensities for temperatures ranging from 1.4 to 13 K. For moderate microwave intensities the h/e PV oscillations are completely quenched providing evidence that the microwaves act to randomize the phase of the electrons. Studies of the temperature dependence of Vdc also provide evidence of the dephasing nature of the microwave field. A complete theoretical explanation of the observed behavior seems to require a theory for the PV effect in a ring geometry.Comment: 10 pages (RevTex twocolumn style), 8 figures-2 pages (one postscript file) To be published in Phys. Rev.

    A study of the vortex flow over 76/40-deg double-delta wing

    Get PDF
    A low-speed wind-tunnel study of the flow about a 76/40-deg double-delta wing is described for angles of attack ranging from -10 to 25 deg and Reynolds numbers ranging from 0.5 to 1.5 Million. The study was conducted to provide data for the purpose of understanding the vortical flow behavior and for validating Computational Fluid Dynamics methods. Flow visualization tests have provided insight into the effect of the angle of attack and Reynolds number of the vortex-dominated flow both on and off of the surface of the double-delta wing. Upper surface pressure recordings from pressure orifices and Pressure Sensitive Paint have provided data on the pressures induced by the vortices. Flowfield surveys were carried out at an angle of attack of 10 deg by using a thin 5-hole probe. Numerical solutions of the compressible thin-layer Navier-Stokes equations were conducted and compared to the experimental data
    • …
    corecore