2,561 research outputs found

    Computer simulation of field ion images of nanoporous structure in the irradiated materials

    Full text link
    Computer simulation and interpretation of field ion microscopy images of ion irradiated platinum are discussed. Field ion microscopy technique provides direct precise atomic scale investigation of crystal lattice defects of atomically pure surface of material; at the same time it allows to analyze the structural defects in volume by controlled and sequential removal of surface atoms by electric field. Defects identification includes the following steps: at the first stage the type of crystalline structure and spatial orientation of crystallographic directions were determined. Thus, we obtain the data about exact position of all atoms of the given volume, i.e. the model image of an ideal crystal. At the second stage, the ion image was processed used the program to obtain the data about real arrangement of atoms of the investigated sample. At the third stage the program compares these two data sets, with a split-hair accuracy revealing a site of all defects in a material. Results of the quantitative analysis show that shape of nanopores are spherical or cylindrical, diameter on nanopores was varied from 1 to 5 run, their depth was fond to be from 1 to 9 nm. It was observed that nearly 40% of nanopores are concentrated in the subsurface layer 10 nm thick, the concentration of nanopores decreased linearly with the distance from the irradiated surface

    Mathematical Models of Video-Sequences of Digital Half-Tone Images

    Get PDF
    This chapter is devoted to Mathematical Models (MM) of Digital Half-Tone Images (DHTI) and their video-sequences presented as causal multi-dimensional Markov Processes (MP) on discrete meshes. The difficulties of MM development for DHTI video-sequences of Markov type are shown. These difficulties are related to the enormous volume of computational operations required for their realization. The method of MM-DHTI construction and their statistically correlated video-sequences on the basis of the causal multi-dimensional multi-value MM is described in detail. Realization of such operations is not computationally intensive; Markov models from the second to fourth order demonstrate this. The proposed method is especially effective when DHTI is represented by low-bit (4-8 bits) binary numbers

    Development of Nonlinear Filtering Algorithms of Digital Half-Tone Images

    Get PDF
    This chapter is devoted to solving the problem of algorithms and structures investigations for Radio Receiver Devices (RRD) with the aim of the nonlinear filtering of Digital Half-Tone Images (DHTI) representing the discrete-time and discrete-value random Markovian process with a number of states greater than two. At that, it is assumed that each value of the DHTI element is represented by the binary g-bit number, whose bits are transmitted via digital communication links in the presence of Additive White Gaussian Noise (AWGN). The authors present the qualitative analysis of the optimal DHTI filtering algorithm. The noise immunity of the optimal radio receiver device for the DHTI filtering with varying quantization and dimension levels is investigated

    The redox transformations and nucleophilic replacements as possible metabolic reactions of the drug β€œTriazaverin”. The chemical modeling of the metabolic processes

    Full text link
    As a model of metabolic transformations of antiviral drug β€œTriazaverin” and its analogues‑2-alkylthio‑6-nitro‑1,2,4-triazolo[5,1-c][1,2,4]triazine‑7-ones 1a-d examined the oxidation of alkylthio groups to the corresponding sulfoxides 2a-d and sulfones 3a-d, as well as the process of nucleophilic substitution sulfonyloxy group of cysteine and cysteamine with the formation of compounds 5 and 6

    Magnetically Mediated Transparent Conductors: In2_2O3_3 doped with Mo

    Get PDF
    First-principles band structure investigations of the electronic, optical and magnetic properties of Mo-doped In2_2O3_3 reveal the vital role of magnetic interactions in determining both the electrical conductivity and the Burstein-Moss shift which governs optical absorption. We demonstrate the advantages of the transition metal doping which results in smaller effective mass, larger fundamental band gap and better overall optical transmission in the visible -- as compared to commercial Sn-doped In2_2O3_3. Similar behavior is expected upon doping with other transition metals opening up an avenue for the family of efficient transparent conductors mediated by magnetic interactions

    Π‘ΠΈΠ½Ρ‚Π΅Π· 6-R-2,2,4-Ρ‚Ρ€ΠΈΠΌΠ΅Ρ‚ΠΈΠ»-1,2-Π΄ΠΈΠ³Ρ–Π΄Ρ€ΠΎΡ…Ρ–Π½ΠΎΠ»Ρ–Π½- Ρ– 6-R-4-R’-2,2,4-Ρ‚Ρ€ΠΈΠΌΠ΅Ρ‚ΠΈΠ»-1,2,3,4-Ρ‚Π΅Ρ‚Ρ€Π°Π³Ρ–Π΄Ρ€ΠΎΡ…Ρ–Π½ΠΎΠ»Ρ–Π½-8-ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΎΠ²ΠΈΡ… кислот – структурних Π°Π½Π°Π»ΠΎΠ³Ρ–Π² helquinoline

    Get PDF
    The peculiarities of the oxidation reaction of substituted (5,6-dihydro)-4,4,6-trimethyl-4H-pyrrolo[3,2,1-ij] quinoline-1,2-diones have been investigated. 6-R-2,2,4-trimethyl-1,2-dihydroquinoline-8-carboxylic acids and 6-R-4-R’-2,2,4-trimethyl-1,2,3,4-tetrahydroquinoline-8-carboxylic acids, which are structural analogues of the naturalΒ antibiotic Helquinoline ((2R,4S)-4-methoxy-2-methyl-1,2,3,4-tetrahydroquinoline-8-carboxylic acid), have beenΒ obtained by oxidation of 8-R-4,4,6-trimethyl-4H-pyrrolo[3,2,1-ij]quinoline-1,2-diones and their hydrogenated analogues – 8-R-6-R’-4,4,6-trimethyl-5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinoline-1,2-diones. It has been shown thatΒ 8-R-6-R’-4,4,6-trimethyl-5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinoline-1,2-diones and 8-R-4,4,6-trimethyl-4H-pyrroloΒ [3,2,1-ij]quinoline-1,2-diones are oxidized similar to isatin with opening of the pyrrole-1,2-dione fragment andΒ subsequent decarboxylation, and the presence of bulky substituents – gem-dimethyl groups in the second positionΒ of the hydroquinoline cycle has no steric effect on the process. Moreover, it has been found that oxidationΒ of 8-R-4,4,6-trimethyl-4H-pyrrolo[3,2,1-ij]quinoline-1,2-diones proceeds selectively with opening the pyrrole-1,2-Β dione fragment without affecting the multiple bond of the dihydroquinoline cycle, polymerization also does not occurΒ on it. The structure of 6-R-4-R’-2,2,4-trimethyl-1,2,3,4-tetrahydroquinoline-8-carboxylic acids and 6-R-2,2,4-trimethyl-1,2-dihydroquinoline-8-carboxylic acids has been confirmed by 1H NMR and 13C NMR spectroscopy,Β mass spectrometry and elemental analysis. With the help of mass spectroscopy it has been shown that theΒ heterocyclic fragment of 6-R-2,2,4-trimethyl-1,2-dihydroquinoline-8-carboxylic acids is more stable compared toΒ the fragment of 6-R-4-R’-2 2,4-trimethyl-1,2,3,4-tetrahydroquinoline-8-carboxylic acids.Π˜Π·ΡƒΡ‡Π΅Π½Ρ‹ особСнности Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ окислСния Π² ряду Π·Π°ΠΌΠ΅Ρ‰Π΅Π½Π½Ρ‹Ρ… (5,6-Π΄ΠΈΠ³ΠΈΠ΄Ρ€ΠΎ)-4,4,6-Ρ‚Ρ€ΠΈΠΌΠ΅Ρ‚ΠΈΠ»-4H-ΠΏΠΈΡ€Ρ€ΠΎΠ»ΠΎΒ [3,2,1-ij]Ρ…ΠΈΠ½ΠΎΠ»ΠΈΠ½-1,2-Π΄ΠΈΠΎΠ½ΠΎΠ². ОкислСниСм 8-R-4,4,6-Ρ‚Ρ€ΠΈΠΌΠ΅Ρ‚ΠΈΠ»-4H-ΠΏΠΈΡ€Ρ€ΠΎΠ»ΠΎ[3,2,1-ij]Ρ…ΠΈΠ½ΠΎΠ»ΠΈΠ½-1,2-Π΄ΠΈΠΎΠ½ΠΎΠ² ΠΈ ΠΈΡ…Β Π³ΠΈΠ΄Ρ€ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π°Π½Π°Π»ΠΎΠ³ΠΎΠ² 8-R-6-R’-4,4,6-Ρ‚Ρ€ΠΈΠΌΠ΅Ρ‚ΠΈΠ»-5,6-Π΄ΠΈΠ³ΠΈΠ΄Ρ€ΠΎ-4H-ΠΏΠΈΡ€Ρ€ΠΎΠ»ΠΎ[3,2,1-ij]Ρ…ΠΈΠ½ΠΎΠ»ΠΈΠ½-1,2-Π΄ΠΈΠΎΠ½ΠΎΠ² ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ соотвСтствСнно 6-R-2,2,4-Ρ‚Ρ€ΠΈΠΌΠ΅Ρ‚ΠΈΠ»-1,2-Π΄ΠΈΠ³ΠΈΠ΄Ρ€ΠΎΡ…ΠΈΠ½ΠΎΠ»ΠΈΠ½-8-ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΎΠ²Ρ‹Π΅ кислоты ΠΈ 6-R-4-R’-2,2,4-Ρ‚Ρ€ΠΈΠΌΠ΅Ρ‚ΠΈΠ»-1,2,3,4-Ρ‚Π΅Ρ‚Ρ€Π°Π³ΠΈΠ΄Ρ€ΠΎΡ…ΠΈΠ½ΠΎΠ»ΠΈΠ½-8-ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΎΠ²Ρ‹Π΅ кислоты, ΡΠ²Π»ΡΡŽΡ‰ΠΈΠ΅ΡΡ структурными Π°Π½Π°Π»ΠΎΠ³Π°ΠΌΠΈ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π°Π½Ρ‚ΠΈΠ±ΠΈΠΎΡ‚ΠΈΠΊΠ° Helquinoline ((2R,4S)-4-мСтокси-2-ΠΌΠ΅Ρ‚ΠΈΠ»-1,2,3,4-Ρ‚Π΅Ρ‚Ρ€Π°Π³ΠΈΠ΄Ρ€ΠΎΡ…ΠΈΠ½ΠΎΠ»ΠΈΠ½-8-ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΎΠ²ΠΎΠΉ кислоты). Показано, Ρ‡Ρ‚ΠΎ 8-R-6-R’-4,4,6-Ρ‚Ρ€ΠΈΠΌΠ΅Ρ‚ΠΈΠ»-5,6-Π΄ΠΈΠ³ΠΈΠ΄Ρ€ΠΎ-4H-ΠΏΠΈΡ€Ρ€ΠΎΠ»ΠΎ[3,2,1-ij]Ρ…ΠΈΠ½ΠΎΠ»ΠΈΠ½-1,2-Π΄ΠΈΠΎΠ½Ρ‹ ΠΈ 8-R-4,4,6-Ρ‚Ρ€ΠΈΠΌΠ΅Ρ‚ΠΈΠ»-4H-ΠΏΠΈΡ€Ρ€ΠΎΠ»ΠΎ[3,2,1-ij]Ρ…ΠΈΠ½ΠΎΠ»ΠΈΠ½-1,2-Π΄ΠΈΠΎΠ½Ρ‹ ΠΎΠΊΠΈΡΠ»ΡΡŽΡ‚ΡΡ ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎ изатину с раскрытиСм ΠΏΠΈΡ€Ρ€ΠΎΠ»-1,2-Π΄ΠΈΠΎΠ½ΠΎΠ²ΠΎΠ³ΠΎ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Π° ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ дСкарбоксилированиСм, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ Π²ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΌ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ Π³ΠΈΠ΄Ρ€ΠΎΡ…ΠΈΠ½ΠΎΠ»ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ Ρ†ΠΈΠΊΠ»Π° ΠΎΠ±ΡŠΠ΅ΠΌΠ½Ρ‹Ρ… замСститСлСй – Π³Π΅ΠΌ-Π΄ΠΈΠΌΠ΅Ρ‚ΠΈΠ»ΡŒΠ½Ρ‹Ρ…Β Π³Ρ€ΡƒΠΏΠΏ Π½Π΅ ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ стСричСского влияния Π½Π° этот процСсс. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, установлСно, Ρ‡Ρ‚ΠΎ окислСниС 8-R-4,4,6-Ρ‚Ρ€ΠΈΠΌΠ΅Ρ‚ΠΈΠ»-4H-ΠΏΠΈΡ€Ρ€ΠΎΠ»ΠΎ[3,2,1-ij]Ρ…ΠΈΠ½ΠΎΠ»ΠΈΠ½-1,2-Π΄ΠΈΠΎΠ½ΠΎΠ² ΠΏΡ€ΠΎΡ‚Π΅ΠΊΠ°Π΅Ρ‚ сСлСктивно с раскрытиСм пиррол-1,2-Π΄ΠΈΠΎΠ½ΠΎΠ²ΠΎΠ³ΠΎ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Π°, Π½Π΅ затрагивая ΠΊΡ€Π°Ρ‚Π½ΡƒΡŽ связь Π΄ΠΈΠ³ΠΈΠ΄Ρ€ΠΎΡ…ΠΈΠ½ΠΎΠ»ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ Ρ†ΠΈΠΊΠ»Π°, полимСризация ΠΏΠΎ Π½Π΅ΠΉ Ρ‚Π°ΠΊΠΆΠ΅ Π½Π΅ происходит. Π‘Ρ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ 6-R-4-R’-2,2,4-Ρ‚Ρ€ΠΈΠΌΠ΅Ρ‚ΠΈΠ»-1,2,3,4-Ρ‚Π΅Ρ‚Ρ€Π°Π³ΠΈΠ΄Ρ€ΠΎΡ…ΠΈΠ½ΠΎΠ»ΠΈΠ½-8-ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΎΠ²Ρ‹Ρ… кислот ΠΈ 6-R-2,2,4-Ρ‚Ρ€ΠΈΠΌΠ΅Ρ‚ΠΈΠ»-1,2-Π΄ΠΈΠ³ΠΈΠ΄Ρ€ΠΎΡ…ΠΈΠ½ΠΎΠ»ΠΈΠ½-8-ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΎΠ²Ρ‹Ρ… кислот ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΎΒ Π΄Π°Π½Π½Ρ‹ΠΌΠΈ ЯМР 1H ΠΈ ЯМР 13Π‘ спСктроскопии, масс-спСктромСтрии ΠΈ элСмСнтного Π°Π½Π°Π»ΠΈΠ·Π°. Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽΒ ΠΌΠ°ΡΡ-спСктроскопии ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ большСй ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒΡŽ ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ гСтСроцикличСский Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Β 6-R-2,2,4-Ρ‚Ρ€ΠΈΠΌΠ΅Ρ‚ΠΈΠ»-1,2-Π΄ΠΈΠ³ΠΈΠ΄Ρ€ΠΎΡ…ΠΈΠ½ΠΎΠ»ΠΈΠ½-8-ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΎΠ²Ρ‹Ρ… кислот ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠΌ 6-R-4-R’-2,2,4-Ρ‚Ρ€ΠΈΠΌΠ΅Ρ‚ΠΈΠ»-1,2,3,4-Ρ‚Π΅Ρ‚Ρ€Π°Π³ΠΈΠ΄Ρ€ΠΎΡ…ΠΈΠ½ΠΎΠ»ΠΈΠ½-8-ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΎΠ²Ρ‹Ρ… кислот.ДослідТСні особливості Ρ€Π΅Π°ΠΊΡ†Ρ–Ρ— окиснСння Π² ряду Π·Π°ΠΌΡ–Ρ‰Π΅Π½ΠΈΡ… (5,6-Π΄ΠΈΠ³Ρ–Π΄Ρ€ΠΎ)-4,4,6-Ρ‚Ρ€ΠΈΠΌΠ΅Ρ‚ΠΈΠ»-4H-ΠΏΡ–Ρ€ΠΎΠ»ΠΎ[3,2,1-ij]Β Ρ…Ρ–Π½ΠΎΠ»Ρ–Π½-1,2-Π΄Ρ–ΠΎΠ½Ρ–Π². ОкиснСнням 8-R-4,4,6-Ρ‚Ρ€ΠΈΠΌΠ΅Ρ‚ΠΈΠ»-4H-ΠΏΡ–Ρ€ΠΎΠ»ΠΎ[3,2,1-ij]Ρ…Ρ–Π½ΠΎΠ»Ρ–Π½-1,2-Π΄Ρ–ΠΎΠ½Ρ–Π² Ρ– Ρ—Ρ… Π³Ρ–Π΄Ρ€ΠΎΠ²Π°Π½ΠΈΡ… Π°Π½Π°Π»ΠΎΠ³Ρ–Π² 8-R-6-R’-4,4,6-Ρ‚Ρ€ΠΈΠΌΠ΅Ρ‚ΠΈΠ»-5,6-Π΄ΠΈΠ³Ρ–Π΄Ρ€ΠΎ-4H-ΠΏΡ–Ρ€ΠΎΠ»ΠΎ[3,2,1-ij]Ρ…Ρ–Π½ΠΎΠ»Ρ–Π½-1,2-Π΄Ρ–ΠΎΠ½Ρ–Π² ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π½ΠΎ 6-R-2,2,4-Ρ‚Ρ€ΠΈΠΌΠ΅Ρ‚ΠΈΠ»-1,2-Π΄ΠΈΠ³Ρ–Π΄Ρ€ΠΎΡ…Ρ–Π½ΠΎΠ»Ρ–Π½-8-ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΎΠ²Ρ– кислоти Ρ‚Π° 6-R-4-R’-2,2,4-Ρ‚Ρ€ΠΈΠΌΠ΅Ρ‚ΠΈΠ»-1,2,3,4-Ρ‚Π΅Ρ‚Ρ€Π°Π³Ρ–Π΄Ρ€ΠΎΡ…Ρ–Π½ΠΎΠ»Ρ–Π½-8-ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΎΠ²Ρ– кислоти, Ρ‰ΠΎ Ρ” структурними Π°Π½Π°Π»ΠΎΠ³Π°ΠΌΠΈ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π°Π½Ρ‚ΠΈΠ±Ρ–ΠΎΡ‚ΠΈΠΊΠ° Helquinoline ((2R, 4S)-4-мСтокси-2-Ρ‚Ρ€ΠΈΠΌΠ΅Ρ‚ΠΈΠ»-1,2,3,4-Ρ‚Π΅Ρ‚Ρ€Π°Π³Ρ–Π΄Ρ€ΠΎΡ…Ρ–Π½ΠΎΠ»Ρ–Π½-8-ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΎΠ²ΠΎΡ— кислоти). Показано, Ρ‰ΠΎ 8-R-6-R’-4,4,6-Ρ‚Ρ€ΠΈΠΌΠ΅Ρ‚ΠΈΠ»-5,6-Π΄ΠΈΠ³Ρ–Π΄Ρ€ΠΎ-4H-ΠΏΡ–Ρ€ΠΎΠ»ΠΎ[3,2,1-ij]Ρ…Ρ–Π½ΠΎΠ»Ρ–Π½-1,2-Π΄Ρ–ΠΎΠ½ΠΈ Ρ– 8-R-4,4,6-Ρ‚Ρ€ΠΈΠΌΠ΅Ρ‚ΠΈΠ»-4H-ΠΏΡ–Ρ€ΠΎΠ»ΠΎ[3,2,1-ij]Ρ…Ρ–Π½ΠΎΠ»Ρ–Π½-1,2-Π΄Ρ–ΠΎΠ½ΠΈ ΠΎΠΊΠΈΡΠ½ΡŽΡŽΡ‚ΡŒΡΡ ΠΏΠΎΠ΄Ρ–Π±Π½ΠΎ Ρ–Π·Π°Ρ‚ΠΈΠ½Ρƒ Π· розкриттям ΠΏΡ–Ρ€ΠΎΠ»-1,2-Π΄Ρ–ΠΎΠ½ΠΎΠ²ΠΎΠ³ΠΎ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Ρƒ Ρ– подальшим Π΄Π΅ΠΊΠ°Ρ€Π±ΠΎΠΊΡΠΈΠ»ΡŽΠ²Π°Π½Π½ΡΠΌ, ΠΏΡ€ΠΈΡ‡ΠΎΠΌΡƒ Π½Π°ΡΠ²Π½Ρ–ΡΡ‚ΡŒ Ρƒ Π΄Ρ€ΡƒΠ³Ρ–ΠΉ ΠΏΠΎΠ·ΠΈΡ†Ρ–Ρ— Π³Ρ–Π΄Ρ€ΠΎΡ…Ρ–Π½ΠΎΠ»Ρ–Π½ΠΎΠ²ΠΎΠ³ΠΎ Ρ†ΠΈΠΊΠ»Ρƒ об’ємних заступників – гСм-Π΄ΠΈΠΌΠ΅Ρ‚ΠΈΠ»ΡŒΠ½ΠΈΡ… Π³Ρ€ΡƒΠΏ Π½Π΅ Ρ‡ΠΈΠ½ΠΈΡ‚ΡŒ стСричного Π²ΠΏΠ»ΠΈΠ²Ρƒ Π½Π° Ρ†Π΅ΠΉ процСс. ΠšΡ€Ρ–ΠΌ Ρ‚ΠΎΠ³ΠΎ, встановлСно, Ρ‰ΠΎ окиснСння 8-R-4,4,6-Ρ‚Ρ€ΠΈΠΌΠ΅Ρ‚ΠΈΠ»-4H-ΠΏΡ–Ρ€ΠΎΠ»ΠΎ[3,2,1-ij]Ρ…Ρ–Π½ΠΎΠ»Ρ–Π½-1,2-Π΄Ρ–ΠΎΠ½iΠ² ΠΏΡ€ΠΎΡ‚Ρ–ΠΊΠ°Ρ” сСлСктивно Π· розкриттям ΠΏΡ–Ρ€ΠΎΠ»-1,2-Π΄Ρ–ΠΎΠ½ΠΎΠ²ΠΎΠ³ΠΎ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Ρƒ, Π½Π΅ Π·Π°Ρ‡Ρ–ΠΏΠ°ΡŽΡ‡ΠΈ ΠΊΡ€Π°Ρ‚Π½Ρƒ зв’язку Π΄ΠΈΠ³Ρ–Π΄Ρ€ΠΎΡ…Ρ–Π½ΠΎΠ»Ρ–Π½ΠΎΠ²ΠΎΠ³ΠΎ Ρ†ΠΈΠΊΠ»Ρƒ, полімСризація ΠΏΠΎ Π½Ρ–ΠΉ Ρ‚Π°ΠΊΠΎΠΆ Π½Π΅ Π²Ρ–Π΄Π±ΡƒΠ²Π°Ρ”Ρ‚ΡŒΡΡ. Π‘ΡƒΠ΄ΠΎΠ²Ρƒ 6-R-4-R’-2,2,4-Ρ‚Ρ€ΠΈΠΌΠ΅Ρ‚ΠΈΠ»-1,2,3,4-Ρ‚Π΅Ρ‚Ρ€Π°Π³Ρ–Π΄Ρ€ΠΎΡ…Ρ–Π½ΠΎΠ»Ρ–Π½-8-ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΎΠ²ΠΈΡ… кислот Ρ–Β 6-R-2,2,4-Ρ‚Ρ€ΠΈΠΌΠ΅Ρ‚ΠΈΠ»-1,2-Π΄ΠΈΠ³Ρ–Π΄Ρ€ΠΎΡ…Ρ–Π½ΠΎΠ»Ρ–Π½ -8-ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΎΠ²ΠΈΡ… кислот ΠΏΡ–Π΄Ρ‚Π²Π΅Ρ€Π΄ΠΆΠ΅Π½ΠΎ Π΄Π°Π½ΠΈΠΌΠΈ ЯМР 1H Ρ‚Π° ЯМР 13Б спСктроскопії, мас-спСктромСтрії Ρ‚Π° Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»Ρ–Π·Ρƒ. Π—Π° допомогою мас-спСктроскопії ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ,Β Ρ‰ΠΎ Π±Ρ–Π»ΡŒΡˆΠΎΡŽ ΡΡ‚Π°Π±Ρ–Π»ΡŒΠ½Ρ–ΡΡ‚ΡŽ Π²ΠΎΠ»ΠΎΠ΄Ρ–Ρ” Π³Π΅Ρ‚Π΅Ρ€ΠΎΡ†ΠΈΠΊΠ»Ρ–Ρ‡Π½ΠΈΠΉ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ 6-R-2,2,4-Ρ‚Ρ€ΠΈΠΌΠ΅Ρ‚ΠΈΠ»-1,2-Π΄ΠΈΠ³Ρ–Π΄Ρ€ΠΎΡ…Ρ–Π½ΠΎΠ»Ρ–Π½-8-ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΎΠ²ΠΈΡ… кислот Ρƒ порівнянні Π· Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠΌ 6-R-4-R’-2, 2,4-Ρ‚Ρ€ΠΈΠΌΠ΅Ρ‚ΠΈΠ»-1,2,3,4-Ρ‚Π΅Ρ‚Ρ€Π°Π³Ρ–Π΄Ρ€ΠΎΡ…Ρ–Π½ΠΎΠ»Ρ–Π½-8-ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΎΠ²ΠΈΡ… кислот
    • …
    corecore