677 research outputs found

    Measurement of Muon Capture on the Proton to 1% Precision and Determination of the Pseudoscalar Coupling g_P

    Full text link
    The MuCap experiment at the Paul Scherrer Institute has measured the rate L_S of muon capture from the singlet state of the muonic hydrogen atom to a precision of 1%. A muon beam was stopped in a time projection chamber filled with 10-bar, ultra-pure hydrogen gas. Cylindrical wire chambers and a segmented scintillator barrel detected electrons from muon decay. L_S is determined from the difference between the mu- disappearance rate in hydrogen and the free muon decay rate. The result is based on the analysis of 1.2 10^10 mu- decays, from which we extract the capture rate L_S = (714.9 +- 5.4(stat) +- 5.1(syst)) s^-1 and derive the proton's pseudoscalar coupling g_P(q^2_0 = -0.88 m^2_mu) = 8.06 +- 0.55.Comment: Updated figure 1 and small changes in wording to match published versio

    Study of the reaction pbar p -> phi phi from 1.1 to 2.0 GeV/c

    Get PDF
    A study has been performed of the reaction pbar p -> 4K using in-flight antiprotons from 1.1 to 2.0 GeV/c incident momentum interacting with a hydrogen jet target. The reaction is dominated by the production of a pair of phi mesons. The pbar p -> phi phi cross section rises sharply above threshold and then falls continuously as a function of increasing antiproton momentum. The overall magnitude of the cross section exceeds expectations from a simple application of the OZI rule by two orders of magnitude. In a fine scan around the xi/f_J(2230) resonance, no structure is observed. A limit is set for the double branching ratio B(xi -> pbar p) * B(xi -> phi phi) < 6e-5 for a spin 2 resonance of M = 2.235 GeV and Width = 15 MeV.Comment: 13 pages, 13 figures, 2 tables, Latex. To be published in Phys. Rev.

    Measurement of the Rate of Muon Capture in Hydrogen Gas and Determination of the Proton's Pseudoscalar Coupling gPg_P

    Full text link
    The rate of nuclear muon capture by the proton has been measured using a new experimental technique based on a time projection chamber operating in ultra-clean, deuterium-depleted hydrogen gas at 1 MPa pressure. The capture rate was obtained from the difference between the measured μ\mu^- disappearance rate in hydrogen and the world average for the μ+\mu^+ decay rate. The target's low gas density of 1% compared to liquid hydrogen is key to avoiding uncertainties that arise from the formation of muonic molecules. The capture rate from the hyperfine singlet ground state of the μp\mu p atom is measured to be ΛS=725.0±17.4s1\Lambda_S=725.0 \pm 17.4 s^{-1}, from which the induced pseudoscalar coupling of the nucleon, gP(q2=0.88mμ2)=7.3±1.1g_P(q^2=-0.88 m_\mu^2)=7.3 \pm 1.1, is extracted. This result is consistent with theoretical predictions for gPg_P that are based on the approximate chiral symmetry of QCD.Comment: submitted to Phys.Rev.Let

    Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant to Part-per-Million Precision

    Get PDF
    We report a measurement of the positive muon lifetime to a precision of 1.0 parts per million (ppm); it is the most precise particle lifetime ever measured. The experiment used a time-structured, low-energy muon beam and a segmented plastic scintillator array to record more than 2 x 10^{12} decays. Two different stopping target configurations were employed in independent data-taking periods. The combined results give tau_{mu^+}(MuLan) = 2196980.3(2.2) ps, more than 15 times as precise as any previous experiment. The muon lifetime gives the most precise value for the Fermi constant: G_F(MuLan) = 1.1663788 (7) x 10^-5 GeV^-2 (0.6 ppm). It is also used to extract the mu^-p singlet capture rate, which determines the proton's weak induced pseudoscalar coupling g_P.Comment: Accepted for publication in Phys. Rev. Let

    Improved Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant

    Full text link
    The mean life of the positive muon has been measured to a precision of 11 ppm using a low-energy, pulsed muon beam stopped in a ferromagnetic target, which was surrounded by a scintillator detector array. The result, tau_mu = 2.197013(24) us, is in excellent agreement with the previous world average. The new world average tau_mu = 2.197019(21) us determines the Fermi constant G_F = 1.166371(6) x 10^-5 GeV^-2 (5 ppm). Additionally, the precision measurement of the positive muon lifetime is needed to determine the nucleon pseudoscalar coupling g_P.Comment: As published version (PRL, July 2007

    A new photon recoil experiment: towards a determination of the fine structure constant

    Get PDF
    We report on progress towards a measurement of the fine structure constant to an accuracy of 5×10105\times 10^{-10} or better by measuring the ratio of the Planck constant to the mass of the cesium atom. Compared to similar experiments, ours is improved in three significant ways: (i) simultaneous conjugate interferometers, (ii) multi-photon Bragg diffraction between same internal states, and (iii) an about 1000 fold reduction of laser phase noise to -138 dBc/Hz. Combining that with a new method to simultaneously stabilize the phases of four frequencies, we achieve 0.2 mrad effective phase noise at the location of the atoms. In addition, we use active stabilization to suppress systematic effects due to beam misalignment.Comment: 12 pages, 9 figure

    SOCS1 Is a Critical Inhibitor of Interferon γ Signaling and Prevents the Potentially Fatal Neonatal Actions of this Cytokine

    Get PDF
    AbstractMice lacking suppressor of cytokine signaling-1 (SOCS1) develop a complex fatal neonatal disease. In this study, SOCS1−/− mice were shown to exhibit excessive responses typical of those induced by interferon γ (IFNγ), were hyperresponsive to viral infection, and yielded macrophages with an enhanced IFNγ-dependent capacity to kill L. major parasites. The complex disease in SOCS1−/− mice was prevented by administration of anti-IFNγ antibodies and did not occur in SOCS1−/− mice also lacking the IFNγ gene. Although IFNγ is essential for resistance to a variety of infections, the potential toxic action of IFNγ, particularly in neonatal mice, appears to require regulation. Our data indicate that SOCS1 is a key modulator of IFNγ action, allowing the protective effects of this cytokine to occur without the risk of associated pathological responses

    Experimental determination of the complete spin structure for anti-proton + proton -> anti-\Lambda + \Lambda at anti-proton beam momentum of 1.637 GeV/c

    Get PDF
    The reaction anti-proton + proton -> anti-\Lambda + \Lambda -> anti-proton + \pi^+ + proton + \pi^- has been measured with high statistics at anti-proton beam momentum of 1.637 GeV/c. The use of a transversely-polarized frozen-spin target combined with the self-analyzing property of \Lambda/anti-\Lambda decay allows access to unprecedented information on the spin structure of the interaction. The most general spin-scattering matrix can be written in terms of eleven real parameters for each bin of scattering angle, each of these parameters is determined with reasonable precision. From these results all conceivable spin-correlations are determined with inherent self-consistency. Good agreement is found with the few previously existing measurements of spin observables in anti-proton + proton -> anti-\Lambda + \Lambda near this energy. Existing theoretical models do not give good predictions for those spin-observables that had not been previously measured.Comment: To be published in Phys. Rev. C. Tables of results (i.e. Ref. 24) are available at http://www-meg.phys.cmu.edu/~bquinn/ps185_pub/results.tab 24 pages, 16 figure
    corecore