3,953 research outputs found

    Statistically Preserved Structures and Anomalous Scaling in Turbulent Active Scalar Advection

    Full text link
    The anomalous scaling of correlation functions in the turbulent statistics of active scalars (like temperature in turbulent convection) is understood in terms of an auxiliary passive scalar which is advected by the same turbulent velocity field. While the odd-order correlation functions of the active and passive fields differ, we propose that the even-order correlation functions are the same to leading order (up to a trivial multiplicative factor). The leading correlation functions are statistically preserved structures of the passive scalar decaying problem, and therefore universality of the scaling exponents of the even-order correlations of the active scalar is demonstrated.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let

    On Conditional Statistics in Scalar Turbulence: Theory vs. Experiment

    Full text link
    We consider turbulent advection of a scalar field T(\B.r), passive or active, and focus on the statistics of gradient fields conditioned on scalar differences ΔT(R)\Delta T(R) across a scale RR. In particular we focus on two conditional averages 2TΔT(R)\langle\nabla^2 T\big|\Delta T(R)\rangle and T2ΔT(R)\langle|\nabla T|^2\big|\Delta T(R) \rangle. We find exact relations between these averages, and with the help of the fusion rules we propose a general representation for these objects in terms of the probability density function P(ΔT,R)P(\Delta T,R) of ΔT(R)\Delta T(R). These results offer a new way to analyze experimental data that is presented in this paper. The main question that we ask is whether the conditional average 2TΔT(R)\langle\nabla^2 T\big| \Delta T(R)\rangle is linear in ΔT\Delta T. We show that there exists a dimensionless parameter which governs the deviation from linearity. The data analysis indicates that this parameter is very small for passive scalar advection, and is generally a decreasing function of the Rayleigh number for the convection data.Comment: Phys. Rev. E, Submitted. REVTeX, 10 pages, 5 figs. (not included) PS Source of the paper with figure available at http://lvov.weizmann.ac.il/onlinelist.html#unpub

    Passive Scalar: Scaling Exponents and Realizability

    Get PDF
    An isotropic passive scalar field TT advected by a rapidly-varying velocity field is studied. The tail of the probability distribution P(θ,r)P(\theta,r) for the difference θ\theta in TT across an inertial-range distance rr is found to be Gaussian. Scaling exponents of moments of θ\theta increase as n\sqrt{n} or faster at large order nn, if a mean dissipation conditioned on θ\theta is a nondecreasing function of θ|\theta|. The P(θ,r)P(\theta,r) computed numerically under the so-called linear ansatz is found to be realizable. Some classes of gentle modifications of the linear ansatz are not realizable.Comment: Substantially revised to conform with published version. Revtex (4 pages) with 2 postscript figures. Send email to [email protected]

    High-Order Contamination in the Tail of Gravitational Collapse

    Get PDF
    It is well known that the late-time behaviour of gravitational collapse is {\it dominated} by an inverse power-law decaying tail. We calculate {\it higher-order corrections} to this power-law behaviour in a spherically symmetric gravitational collapse. The dominant ``contamination'' is shown to die off at late times as M2t4ln(t/M)M^2t^{-4}\ln(t/M). This decay rate is much {\it slower} than has been considered so far. It implies, for instance, that an `exact' (numerical) determination of the power index to within 1\sim 1 % requires extremely long integration times of order 104M10^4 M. We show that the leading order fingerprint of the black-hole electric {\it charge} is of order Q2t4Q^2t^{-4}.Comment: 12 pages, 2 figure

    Dynamics of Scalar Fields in the Background of Rotating Black Holes

    Get PDF
    A numerical study of the evolution of a massless scalar field in the background of rotating black holes is presented. First, solutions to the wave equation are obtained for slowly rotating black holes. In this approximation, the background geometry is treated as a perturbed Schwarzschild spacetime with the angular momentum per unit mass playing the role of a perturbative parameter. To first order in the angular momentum of the black hole, the scalar wave equation yields two coupled one-dimensional evolution equations for a function representing the scalar field in the Schwarzschild background and a second field that accounts for the rotation. Solutions to the wave equation are also obtained for rapidly rotating black holes. In this case, the wave equation does not admit complete separation of variables and yields a two-dimensional evolution equation. The study shows that, for rotating black holes, the late time dynamics of a massless scalar field exhibit the same power-law behavior as in the case of a Schwarzschild background independently of the angular momentum of the black hole.Comment: 14 pages, RevTex, 6 Figure

    Simulations of a turbulent channel flow with rodlike polymers

    Get PDF
    The modification of turbulence due to the introduction of dilute fibres in a channel flow is analysed by means of Direct Numerical Simulation (DNS). Using a simplified rheological model it is possible to assess that the modification of turbulent structure is far simpler than in the flexible case. In fact, at a given fibre concentration some relevant statistics show a substantial insensitivity on Reynolds number

    Unconventional Gravitational Excitation of a Schwarzschild Black Hole

    Get PDF
    Besides the well-known quasinormal modes, the gravitational spectrum of a Schwarzschild black hole also has a continuum part on the negative imaginary frequency axis. The latter is studied numerically for quadrupole waves. The results show unexpected striking behavior near the algebraically special frequency Ω=4i\Omega=-4i. This reveals a pair of unconventional damped modes very near Ω\Omega, confirmed analytically.Comment: REVTeX4, 4pp, 6 EPS figure files. N.B.: "Alec" is my first, and "Maassen van den Brink" my family name. v2: better pole placement in Fig. 1. v3: fixed Refs. [9,20]. v4: added context on "area quantum" research; trimmed one Fig.; textual clarification

    Wave Propagation in Gravitational Systems: Completeness of Quasinormal Modes

    Get PDF
    The dynamics of relativistic stars and black holes are often studied in terms of the quasinormal modes (QNM's) of the Klein-Gordon (KG) equation with different effective potentials V(x)V(x). In this paper we present a systematic study of the relation between the structure of the QNM's of the KG equation and the form of V(x)V(x). In particular, we determine the requirements on V(x)V(x) in order for the QNM's to form complete sets, and discuss in what sense they form complete sets. Among other implications, this study opens up the possibility of using QNM expansions to analyse the behavior of waves in relativistic systems, even for systems whose QNM's do {\it not} form a complete set. For such systems, we show that a complete set of QNM's can often be obtained by introducing an infinitesimal change in the effective potential

    Late Time Tail of Wave Propagation on Curved Spacetime

    Get PDF
    The late time behavior of waves propagating on a general curved spacetime is studied. The late time tail is not necessarily an inverse power of time. Our work extends, places in context, and provides understanding for the known results for the Schwarzschild spacetime. Analytic and numerical results are in excellent agreement.Comment: 11 pages, WUGRAV-94-1
    corecore