A numerical study of the evolution of a massless scalar field in the
background of rotating black holes is presented. First, solutions to the wave
equation are obtained for slowly rotating black holes. In this approximation,
the background geometry is treated as a perturbed Schwarzschild spacetime with
the angular momentum per unit mass playing the role of a perturbative
parameter. To first order in the angular momentum of the black hole, the scalar
wave equation yields two coupled one-dimensional evolution equations for a
function representing the scalar field in the Schwarzschild background and a
second field that accounts for the rotation. Solutions to the wave equation are
also obtained for rapidly rotating black holes. In this case, the wave equation
does not admit complete separation of variables and yields a two-dimensional
evolution equation. The study shows that, for rotating black holes, the late
time dynamics of a massless scalar field exhibit the same power-law behavior as
in the case of a Schwarzschild background independently of the angular momentum
of the black hole.Comment: 14 pages, RevTex, 6 Figure