386 research outputs found

    Simplest cosmological model with the scalar field II. Influence of cosmological constant

    Full text link
    Continuing the investigation of the simplest cosmological model with the massive real scalar non-interacting inflaton field minimally coupled to gravity we study an influence of the cosmological constant on the behaviour of trajectories in closed minisuperspace Friedmann-Robertson-Walker model. The transition from chaotic to regular behaviour for large values of cosmological constant is discussed. Combining numerical calculations with qualitative analysis both in configuration and phase space we present a convenient classification of trajectories.Comment: 12 pages with 2 gif figures and 2 eps figures, mprocl.sty, To appear in International Journal of Modern Physics

    Reduction without reduction: Adding KK-monopoles to five dimensional stationary axisymmetric solutions

    Full text link
    We present a general method to add KK-monopole charge to any asymptotically flat stationary axisymmetric solution of five dimensional General Relativity. The technique exploits the underlying SL(3,R) invariance of the system by identifying a particular element of the symmetry group which changes the asymptotic boundary condition and adds KK-monopole charge. Furthermore, we develop a set of technical tools which allow us to apply the SL(3,R) transformations to solutions produced by the Inverse Scattering method. As an example of our methods, we construct the exact solution describing a static black ring carrying KK-monopole charge.Comment: 36 pages, 3 figures, LaTeX, minor typos fixe

    Polarization ququarts

    Full text link
    We discuss the concept of polarization states of four-dimensional quantum systems based on frequency non-degenerate biphoton field. Several quantum tomography protocols were developed and implemented for measurement of an arbitrary state of ququart. A simple method that does not rely on interferometric technique is used to generate and measure the sequence of states that can be used for quantum communication purposes.Comment: 13 pages, 10 figure

    Predicting gene promoter methylation in non-small-cell lung cancer by evaluating sputum and serum

    Get PDF
    The use of 5-methylcytosine demethylating agents in conjunction with inhibitors of histone deacetylation may offer a new therapeutic strategy for lung cancer. Monitoring the efficacy of gene demethylating treatment directly within the tumour may be difficult due to tumour location. This study determined the positive and negative predictive values of sputum and serum for detecting gene methylation in primary lung cancer. A panel of eight genes was evaluated by comparing methylation detected in the primary tumour biopsy to serum and sputum obtained from 72 patients with Stage III lung cancer. The prevalence for methylation of the eight genes in sputum (21–43%) approximated to that seen in tumours, but was 0.7–4.3-fold greater than detected in serum. Sputum was superior to serum in classifying the methylation status of genes in the tumour biopsy. The positive predictive value of the top four genes (p16, DAPK, PAX5 β, and GATA5) was 44–72% with a negative predictive value for these genes ⩾70%. The highest specificity was seen for the p16 gene, and this was associated with a odds ratio of six for methylation in the tumour when this gene was methylated in sputum. In contrast, for serum, the individual sensitivity for all genes was 6–27%. Evaluating the combined effect of methylation of at least one of the four most significant genes in sputum increased the positive predictive value to 86%. These studies demonstrate that sputum can be used effectively as a surrogate for tumour tissue to predict the methylation status of advanced lung cancer where biopsy is not feasible

    On the gravitational field of static and stationary axial symmetric bodies with multi-polar structure

    Get PDF
    We give a physical interpretation to the multi-polar Erez-Rozen-Quevedo solution of the Einstein Equations in terms of bars. We find that each multi-pole correspond to the Newtonian potential of a bar with linear density proportional to a Legendre Polynomial. We use this fact to find an integral representation of the γ\gamma function. These integral representations are used in the context of the inverse scattering method to find solutions associated to one or more rotating bodies each one with their own multi-polar structure.Comment: To be published in Classical and Quantum Gravit

    Hyperbolic billiards of pure D=4 supergravities

    Full text link
    We compute the billiards that emerge in the Belinskii-Khalatnikov-Lifshitz (BKL) limit for all pure supergravities in D=4 spacetime dimensions, as well as for D=4, N=4 supergravities coupled to k (N=4) Maxwell supermultiplets. We find that just as for the cases N=0 and N=8 investigated previously, these billiards can be identified with the fundamental Weyl chambers of hyperbolic Kac-Moody algebras. Hence, the dynamics is chaotic in the BKL limit. A new feature arises, however, which is that the relevant Kac-Moody algebra can be the Lorentzian extension of a twisted affine Kac-Moody algebra, while the N=0 and N=8 cases are untwisted. This occurs for N=5, N=3 and N=2. An understanding of this property is provided by showing that the data relevant for determining the billiards are the restricted root system and the maximal split subalgebra of the finite-dimensional real symmetry algebra characterizing the toroidal reduction to D=3 spacetime dimensions. To summarize: split symmetry controls chaos.Comment: 21 page

    Two Kerr black holes with axisymmetric spins: An improved Newtonian model for the head-on collision and gravitational radiation

    Get PDF
    We present a semi-analytical approach to the interaction of two (originally) Kerr black holes through a head-on collision process. An expression for the rate of emission of gravitational radiation is derived from an exact solution to the Einstein's field equations. The total amount of gravitational radiation emitted in the process is calculated and compared to current numerical investigations. We find that the spin-spin interaction increases the emission of gravitational wave energy up to 0.2% of the total rest mass. We discuss also the possibility of spin-exchange between the holes.Comment: 8 pages, RevTeX, 2 figures, psbox macro include

    Mass-Inflation in Dynamical Gravitational Collapse of a Charged Scalar-Field

    Get PDF
    We study the inner-structure of a charged black-hole which is formed from the gravitational collapse of a self-gravitating charged scalar-field. Starting with a regular spacetime, we follow the evolution through the formation of an apparent horizon, a Cauchy horizon and a final central singularity. We find a null, weak, mass-inflation singularity along the Cauchy horizon, which is a precursor of a strong, spacelike singularity along the r=0r=0 hypersurface.Comment: Latex, 13 pages including 4 figures, Revtex.st

    Clarifying Inflation Models: the Precise Inflationary Potential from Effective Field Theory and the WMAP data

    Full text link
    We clarify inflaton models by considering them as effective field theories in the Ginzburg-Landau spirit.In this new approach, the precise form of the inflationary potential is constructed from the present WMAP data, and a useful scheme is prepared to confront with the forthcoming data. In this approach, the WMAP statement excluding the pure phi^4 potential implies the presence of an inflaton mass term at the scale m sim 10^{13}GeV. Chaotic, new and hybrid inflation is studied in an unified way. In all cases the inflaton potential takes the form V(phi) = m^2 M_{Pl}^2 v(phi/M_{Pl}), where all coefficients in the polynomial v(x) are of order one. If such potential corresponds to super symmetry breaking, the susy breaking scale is sqrt{m M_{Pl}} \sim 10^{16}GeV which turns to coincide with the GUT scale. The inflaton mass is therefore given by a see-saw formula m sim M_{GUT}^2/M_{Pl}. The observables turn to be two valued functions: one branch corresponds to new inflation and the other to chaotic inflation,the branch point being the pure quadratic potential.For red tilt spectrum, the potential which fits the best the present data and which best prepares the way for the forthcoming data is a trinomial polynomial withnegative quadratic term (new inflation).For blue tilt spectrum, hybrid inflation turns to be the best choice. In both cases we find a formula relating the inflaton mass with the ratio r of tensor/scalar perturbations and the spectral index ns of scalar perturbations: 10^6 m/M_{Pl}= 127 sqrt{r|1-n_s|} ;(the coefficient 127 follows from the WMAP amplitude.Implications for string theory are discussed.Comment: LaTeX, 33 pages, 24 .ps figures. Improved version published in Phys Rev
    corecore