155 research outputs found
Fermionization of two-component few-fermion systems in a one-dimensional harmonic trap
The nature of strongly interacting Fermi gases and magnetism is one of the
most important and studied topics in condensed-matter physics. Still, there are
many open questions. A central issue is under what circumstances strong
short-range repulsive interactions are enough to drive magnetic correlations.
Recent progress in the field of cold atomic gases allows to address this
question in very clean systems where both particle numbers, interactions and
dimensionality can be tuned. Here we study fermionic few-body systems in a one
dimensional harmonic trap using a new rapidly converging effective-interaction
technique, plus a novel analytical approach. This allows us to calculate the
properties of a single spin-down atom interacting with a number of spin-up
particles, a case of much recent experimental interest. Our findings indicate
that, in the strongly interacting limit, spin-up and spin-down particles want
to separate in the trap, which we interpret as a microscopic precursor of
one-dimensional ferromagnetism in imbalanced systems. Our predictions are
directly addressable in current experiments on ultracold atomic few-body
systems.Comment: 12 pages, 6 figures, published version including two appendices on
our new numerical and analytical approac
Three and Four Harmonically Trapped Particles in an Effective Field Theory Framework
We study systems of few two-component fermions interacting via short-range
interactions within a harmonic-oscillator trap. The dominant interactions,
which are two-body, are organized according to the number of derivatives and
defined in a two-body truncated model space made from a bound-state basis.
Leading-order (LO) interactions are solved for exactly using the formalism of
the No-Core Shell Model, whereas corrections are treated as many-body
perturbations. We show explicitly that next-to-LO and next-to-next-to-LO
interactions improve convergence as the model space increases. We present
results at unitarity for three- and four-fermion systems, which show excellent
agreement with the exact solution (for the three-body problem) and results
obtained by others methods (in the four-body case). We also present results for
finite scattering lengths and non-zero range of the interaction, including (at
positive scattering length) observation of a change in the structure of the
three-body ground state and extraction of the atom-dimer scattering length.Comment: 18 pages, 10 figure
Two and Three Nucleons in a Trap and the Continuum Limit
We describe systems of two and three nucleons trapped in a
harmonic-oscillator potential with interactions from the pionless effective
field theory up to next-to-leading order (NLO). We construct the two-nucleon
interaction using two-nucleon scattering information. We calculate the trapped
levels in the three-nucleon system with isospin and determine the
three-nucleon force needed for stability of the triton. We extract
neutron-deuteron phase shifts, and show that the quartet scattering length is
in good agreement with experimental data.Comment: 19 pages, 15 figure
Toward a complete theory for predicting inclusive deuteron breakup away from stability
We present an account of the current status of the theoretical treatment of
inclusive reactions in the breakup-fusion formalism, pointing to some
applications and making the connection with current experimental capabilities.
Three independent implementations of the reaction formalism have been recently
developed, making use of different numerical strategies. The codes also
originally relied on two different but equivalent representations, namely the
prior (Udagawa-Tamura, UT) and the post (Ichimura-Austern-Vincent, IAV)
representations.
The different implementations have been benchmarked, and then applied to the
Ca isotopic chain. The neutron-Ca propagator is described in the Dispersive
Optical Model (DOM) framework, and the interplay between elastic breakup (EB)
and non-elastic breakup (NEB) is studied for three Ca isotopes at two different
bombarding energies. The accuracy of the description of different reaction
observables is assessed by comparing with experimental data of on
Ca. We discuss the predictions of the model for the extreme case of
an isotope (Ca) currently unavailable experimentally, though possibly
available in future facilities (nominally within production reach at FRIB). We
explore the use of reactions as surrogates for processes,
by using the formalism to describe the compound nucleus formation in a
reaction as a function of excitation energy, spin, and parity.
The subsequent decay is then computed within a Hauser-Feshbach formalism.
Comparisons between the and induced gamma decay
spectra are discussed to inform efforts to infer neutron captures from
reactions. Finally, we identify areas of opportunity for future
developments, and discuss a possible path toward a predictive reaction theory
Three particles in a finite volume: The breakdown of spherical symmetry
Lattice simulations of light nuclei necessarily take place in finite volumes,
thus affecting their infrared properties. These effects can be addressed in a
model-independent manner using Effective Field Theories. We study the model
case of three identical bosons (mass m) with resonant two-body interactions in
a cubic box with periodic boundary conditions, which can also be generalized to
the three-nucleon system in a straightforward manner. Our results allow for the
removal of finite volume effects from lattice results as well as the
determination of infinite volume scattering parameters from the volume
dependence of the spectrum. We study the volume dependence of several states
below the break-up threshold, spanning one order of magnitude in the binding
energy in the infinite volume, for box side lengths L between the two-body
scattering length a and L = 0.25a. For example, a state with a three-body
energy of -3/(ma^2) in the infinite volume has been shifted to -10/(ma^2) at L
= a. Special emphasis is put on the consequences of the breakdown of spherical
symmetry and several ways to perturbatively treat the ensuing partial wave
admixtures. We find their contributions to be on the sub-percent level compared
to the strong volume dependence of the S-wave component. For shallow bound
states, we find a transition to boson-diboson scattering behavior when
decreasing the size of the finite volume.Comment: 21 pages, 4 figures, 2 table
Oxidative phosphorylation is required for powering motility and development of the sleeping sickness parasite Trypanosoma brucei in the tsetse fly vector
The single-celled parasite Trypanosoma brucei is transmitted by hematophagous tsetse flies. Life cycle progression from mammalian bloodstream form to tsetse midgut form and, subsequently, infective salivary gland form depends on complex developmental steps and migration within different fly tissues. As the parasite colonizes the glucose-poor insect midgut, ATP production is thought to depend on activation of mitochondrial amino acid catabolism via oxidative phosphorylation (OXPHOS). This process involves respiratory chain complexes and F1Fo-ATP synthase and requires protein subunits of these complexes that are encoded in the parasite's mitochondrial DNA (kDNA). Here, we show that progressive loss of kDNA-encoded functions correlates with a decreasing ability to initiate and complete development in the tsetse. First, parasites with a mutated F1Fo-ATP synthase with reduced capacity for OXPHOS can initiate differentiation from bloodstream to insect form, but they are unable to proliferate in vitro. Unexpectedly, these cells can still colonize the tsetse midgut. However, these parasites exhibit a motility defect and are severely impaired in colonizing or migrating to subsequent tsetse tissues. Second, parasites with a fully disrupted F1Fo-ATP synthase complex that is completely unable to produce ATP by OXPHOS can still differentiate to the first insect stage in vitro but die within a few days and cannot establish a midgut infection in vivo. Third, parasites lacking kDNA entirely can initiate differentiation but die soon after. Together, these scenarios suggest that efficient ATP production via OXPHOS is not essential for initial colonization of the tsetse vector but is required to power trypanosome migration within the fly.
IMPORTANCE African trypanosomes cause disease in humans and their livestock and are transmitted by tsetse flies. The insect ingests these parasites with its blood meal, but to be transmitted to another mammal, the trypanosome must undergo complex development within the tsetse fly and migrate from the insect's gut to its salivary glands. Crucially, the parasite must switch from a sugar-based diet while in the mammal to a diet based primarily on amino acids when it develops in the insect. Here, we show that efficient energy production by an organelle called the mitochondrion is critical for the trypanosome's ability to swim and to migrate through the tsetse fly. Surprisingly, trypanosomes with impaired mitochondrial energy production are only mildly compromised in their ability to colonize the tsetse fly midgut. Our study adds a new perspective to the emerging view that infection of tsetse flies by trypanosomes is more complex than previously thought
Leishmania isoenzyme polymorphisms in Ecuador: Relationships with geographic distribution and clinical presentation
Background: Determinants of the clinical presentation of the leishmaniases are poorly understood but Leishmania species and strain differences are important. To examine the relationship between clinical presentation, species and isoenzyme polymorphisms, 56 Leishmania isolates from distinct presentations of American tegumentary leishmaniasis (ATL) from Ecuador were analyzed.
Methods: Isolates were characterized by multilocus enzyme electrophoresis for polymorphisms of 11 isoenzymes. Patients were infected in four different ecologic regions: highland and lowland jungle of the Pacific coast, Amazonian lowlands and Andean highlands.
Results: Six Leishmania species constituting 21 zymodemes were identified: L. (Viannia) panamensis (21 isolates,
7 zymodemes), L. (V.) guyanensis (7 isolates, 4 zymodemes), L. (V.) braziliensis (5 isolates, 3 zymodemes), L.
(Leishmania) mexicana (11 isolates, 4 zymodemes), L. (L.) amazonensis (10 isolates, 2 zymodemes) and L. (L.) major
(2 isolates, 1 zymodeme). L. panamensis was the species most frequently identified in the Pacific region and was
associated with several clinical variants of cutaneous disease (CL); eight cases of leishmaniasis recidiva cutis (LRC) found in the Pacific highlands were associated with 3 zymodemes of this species. Mucocutaneous leishmaniasis
found only in the Amazonian focus was associated with 3 zymodemes of L. braziliensis. The papular variant of CL,
Uta, found in the Andean highlands was related predominantly with a single zymodeme of L. mexicana.
Conclusion: Our data show a high degree of phenotypic variation within species, and some evidence for associations between specific variants of ATL (i.e. Uta and LRC) and specific Leishmania zymodemes. This study
further defines the geographic distribution of Leishmania species and clinical variants of ATL in Ecuador
Whole genome duplication is an early event leading to aneuploidy in -wild type glioblastoma
Glioblastoma, the most frequent and lethal form of glioma, displays chromosome instability and recurrent somatic copy number alterations (SCNA). Chromothripsis and whole genome duplication (WGD) have been recently identified in cancer. In the present study, we analyzed SCNA and determine the ploidy pattern in 123 -wild-type glioblastomas, using SNP array data. WGD and chromothripsis events were validated using, respectively, FISH and CTLPScanner. WGD was detected in 11.4% glioblastomas (14/123) and was associated with mutation ( = 0.0068). It was an early event occurring after the recurrent SCNA observed in diffuse high-grade gliomas. Glioblastomas with WGD were more aneuploid compared to glioblastomas without WGD ( < 0.0001). Chromothripsis occurred in 29.3% glioblastomas (36/123) and mostly affected chromosomes 7, 9 and 12, with amplification of oncogenes (EGFR, /), and homozygous deletion of tumor suppressor genes (). There was a significant association between chromothripsis and gene rearrangement at a given locus. WGD is an early genetic event significantly associated to mutation and leading to chromosome instability and aneuploidy in -wild-type glioblastoma. Chromothripsis recurrently targets oncogenes and tumor suppressor genes that are key players in gliomagenesis and tumor progression. The occurrence of chromothripsis points to underlying gene rearrangements (including gene fusions), potential therapeutic targets in glioblastoma
- …