13 research outputs found

    Mechanical and physical characterization of natural and synthetic consolidants

    Get PDF
    Abstract The mechanical behavior of adhesives is strongly influenced by a large number of variables, relating to a complex interaction of mechanical-physical-chemical factors, such as its loading direction (shear, peel), the temperature and the environmental relative humidity (RH). These variables can have a large influence on the durability of restored art objects where thermoplastic adhesives have been used as a consolidant. This study aims to characterise the mechanical and physical behavior of some adhesives commonly used polymers by conservators as consolidants to restore cultural objects such as canvas paintings or historic wooden furniture. Twelve commercially available natural and synthetic adhesive materials were tested. The influence of RH at room temperature on the mechanical and physical properties of the adhesives was investigated. Shear and peel experiments were performed on adhesively bonded wood and canvas coupon to establish mechanical characterisation. The physical properties of the adhesives were determined by performing moisture adsorption measurements and Differential Scanning Calorimetry (DSC). The results of this study demonstrate that synthetic adhesive products are able to resist higher shear and peel loads than natural types. Moreover, the influence of important changes in RH on the mechanical properties of the adhesives was demonstrated. Reflecting on the combined data derived from shear and peel tests with the adhesive's sensitivity to moisture will help conservators to select the most suitable adhesives for their applications to achieve optimal durability and the best mechanical performance in versatile environmental conditions

    Fluorescence of paint and varnish layers (Part 1)

    No full text

    Degradation of cellulose at the wet-dry interface. II. Study of oxidation reactions and effect of antioxidants

    No full text
    International audienceTo better understand the degradation of cellulose upon the formation of a tideline at the wet–dry interface when paper is suspended in water, the production of chemical species involved in oxidation reactions was studied. The quantitation of hydroperoxides and hydroxyl radicals was carried out in reverse phase chromatography using triphenylphosphine and terephthalic acid, respectively, as chemical probes. Both reactive oxygen species were found in the tideline immediately after its formation, in the range of micro-moles and nanomoles per gram of paper, respectively. The results indicate that hydroxyl radicals form for the most part in paper before the tideline experiment, whereas hydroperoxides appear to be produced primarily during tideline formation. Iron sulfate impregnation of the paper raised the production of hydroperoxides. After hygrothermal aging in sealed vials the hydroxyl radical content in paper increased significantly. When aged together in the same vial, tideline samples strongly influenced the degradation of samples from other areas of the paper (multi-sample aging). Different types of antioxidants were added to the paper before the tideline experiment to investigate their effect on the oxidation reactions taking place. In samples treated with iron sulfate or artificially aged, the addition of Irgafos 168 (tris(2,4-ditert-butylphenyl) phosphate) and Tinuvin 292 (bis(1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and methyl 1,2,2,6,6-pentamethyl-4-piperidyl sebacate) reduced the concentration of hydroperoxides and hydroxyl radicals, respectively. Tinuvin 292 was also found to considerably lower the rate of cellulose chain scission reactions during hygrothermal aging of the paper

    Degradation of cellulose at the wet-dry interface: I - study of the depolymerization

    No full text
    International audienceThe degradation of cellulose in paper due to the formation of a tideline at the wet-dry interface when paper is suspended in water was explored. SEC/ MALS was used to assess the molar mass, while ICP/ MS, SEM/EDS and CE/UV provided a qualitative and quantitative analysis of the elements and inorganic ions present in the paper. Immediately after the formation of the tideline, no significant depolymer-ization was observed at the wet-dry interface, despite the accumulation of water soluble brown and/or fluorescent degradation compounds and salts containing sodium, chlorine, sulfur and calcium. Various artificial aging configurations were applied to the paper with tidelines to evaluate the effect of the material accumulated at the wet-dry interface on the long-term stability of paper. The decrease in the molar mass of cellulose (above, at and below the tideline) differed depending on the type of aging, i.e. whether the entire sheet of paper was aged or whether small amounts of paper from the different areas were sampled and aged, individually or together, which evidences a complex degradation pathway. In the former aging configuration the material accumulated in the tideline affected the degradation of the tideline area to the same extent or more than the other areas. When the different areas of the paper sheet were sampled and aged together, it was found that the presence of the tideline clearly affected the degradation of the other paper areas. Conversely, in that case, cellulose within the tidelines was the least degraded. The area below the tideline, through which the water migrated, showed the most significant degradation

    The photostability and peel strength of ethylene butyl acrylate copolymer blends for use in conservation of cultural heritage

    No full text
    Materials, both natural and synthetic, are used as adhesives or consolidants during the conservation of cultural objects. However, few adhesives have been formulated specifically for the needs of cultural heritage. This article describes a study of the stability of ethylene butyl acrylate copolymers as well as blends of these polymers with low molecular weight resins, which may be used as consolidating adhesives for flaking and fragile paint layers. The materials were aged under simulated museum conditions. Fourier-transform infrared spectroscopy and size exclusion chromatography were used to analyze changes in chemical structure and molecular weight distribution, respectively. The degree of degradation was found to be dependent on the specific blend composition. With the addition of a hindered amine light stabilizer, minimal changes occurred in the molecular weight distribution and no loss in polymer solubility were noted. Therefore, it is suggested to incorporate a stabilizer into ethylene butyl acrylate polymer blends to extend their life and safe use in cultural heritage. Differential scanning calorimetry was employed to investigate the miscibility of the binary blends and the temperature window of their application. Furthermore, adhesive peel strength for the individual components and the binary mixtures revealed values comparable to that of Paraloid™ B-72, a frequently used consolidant. Consolidation tests on the blends were done by professional conservators on mock up and dummy paintings

    The photo-stability of acrylic tri-block copolymer blends for the consolidation of cultural heritage

    No full text
    A variety of adhesives are used for the conservation of paintings. These materials include natural adhesives such as animal glues, waxes, and gums which may chemically degrade over time resulting in unwanted discoloration and mechanical failure. Synthetic adhesives have been introduced to address these concerns. However, most consolidating adhesives have not been specifically formulated and tested to meet the high demands of conservation, ultimately resulting in undesirable physical and mechanical properties. Additionally, some synthetic adhesives are less stable and may cross-link making it difficult to remove years after application. This paper investigates the photo-stability of commercially available tri-block acrylic copolymers (PMMA-PnBA-PMMA) to assess their potential long-term serviceability as consolidants for flaking paint. These copolymers were combined with synthetic low molecular weight resins to reduce viscosity of the adhesive and provide tack. The polymer blends underwent accelerated aging under simulated indoor conditions. Blends were analysed for degradation using Fourier-transform infrared spectroscopy and size exclusion chromatography. Upon irradiation, acrylic copolymers (PMMA-PnBA-PMMA) undergo shifts to higher and lower molecular weight, suggesting that degradation occurs by polymer cross-linking and chain scission. Furthermore, the acrylic copolymer degradation rate was influenced by the type of low molecular weight resin. However, with the addition of a hindered amine light stabilizer these blends exhibited minimal changes in molecular weight. Lastly, the peel strength of the blends were investigated and shown to have comparable peel strength to a popular commercial material, Paraloid™ B-72, often used in consolidation thus showing their promise for use within cultural heritage.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Structural Integrity & CompositesAdhesion Institut

    Mechanical and physical characterization of natural and synthetic consolidants

    No full text
    The mechanical behavior of adhesives is strongly influenced by a large number of variables, relating to a complex interaction of mechanical-physical-chemical factors, such as its loading direction (shear, peel), the temperature and the environmental relative humidity (RH). These variables can have a large influence on the durability of restored art objects where thermoplastic adhesives have been used as a consolidant. This study aims to characterise the mechanical and physical behavior of some adhesives commonly used polymers by conservators as consolidants to restore cultural objects such as canvas paintings or historic wooden furniture. Twelve commercially available natural and synthetic adhesive materials were tested. The influence of RH at room temperature on the mechanical and physical properties of the adhesives was investigated. Shear and peel experiments were performed on adhesively bonded wood and canvas coupon to establish mechanical characterisation. The physical properties of the adhesives were determined by performing moisture adsorption measurements and Differential Scanning Calorimetry (DSC). The results of this study demonstrate that synthetic adhesive products are able to resist higher shear and peel loads than natural types. Moreover, the influence of important changes in RH on the mechanical properties of the adhesives was demonstrated. Reflecting on the combined data derived from shear and peel tests with the adhesive's sensitivity to moisture will help conservators to select the most suitable adhesives for their applications to achieve optimal durability and the best mechanical performance in versatile environmental conditions.Adhesion InstituteBio-based Structures & Material
    corecore